How to turn a boolean array into index array in numpy
This video explains
How to turn a boolean array into index array in numpy
--
Become part of the top 3% of the developers by applying to Toptal
https://topt.al/25cXVn
--
Music by Eric Matyas
https://www.soundimage.org
Track title: Magical Minnie Puzzles
--
Chapters
00:00 Question
00:38 Accepted answer (Score 101)
00:56 Answer 2 (Score 35)
01:10 Answer 3 (Score 3)
01:26 Answer 4 (Score 2)
01:48 Thank you
--
Full question
https://stackoverflow.com/questions/8218...
Answer 1 links:
[numpy.nonzero()]: http://docs.scipy.org/doc/numpy/referenc...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #arrays #numpy
#avk47
How to turn a boolean array into index array in numpy
--
Become part of the top 3% of the developers by applying to Toptal
https://topt.al/25cXVn
--
Music by Eric Matyas
https://www.soundimage.org
Track title: Magical Minnie Puzzles
--
Chapters
00:00 Question
00:38 Accepted answer (Score 101)
00:56 Answer 2 (Score 35)
01:10 Answer 3 (Score 3)
01:26 Answer 4 (Score 2)
01:48 Thank you
--
Full question
https://stackoverflow.com/questions/8218...
Answer 1 links:
[numpy.nonzero()]: http://docs.scipy.org/doc/numpy/referenc...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #arrays #numpy
#avk47
ACCEPTED ANSWER
Score 110
Another option:
In [13]: numpy.where(mask)
Out[13]: (array([36, 68, 84, 92, 96, 98]),)
which is the same thing as numpy.where(mask==True).
ANSWER 2
Score 37
You should be able to use numpy.nonzero() to find this information.
ANSWER 3
Score 2
np.arange(100,1,-1)
array([100, 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88,
87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75,
74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62,
61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49,
48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36,
35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23,
22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10,
9, 8, 7, 6, 5, 4, 3, 2])
x=np.arange(100,1,-1)
np.where(x&(x-1) == 0)
(array([36, 68, 84, 92, 96, 98]),)
Now rephrase this like :
x[x&(x-1) == 0]
ANSWER 4
Score 2
If you prefer the indexer way, you can convert your boolean list to numpy array:
print x[nd.array(mask)]