How to convert SQL Query result to PANDAS Data Structure?
--
Music by Eric Matyas
https://www.soundimage.org
Track title: Digital Sunset Looping
--
Chapters
00:00 Question
01:08 Accepted answer (Score 176)
01:27 Answer 2 (Score 168)
02:09 Answer 3 (Score 42)
02:42 Answer 4 (Score 23)
04:05 Thank you
--
Full question
https://stackoverflow.com/questions/1204...
Answer 1 links:
[SQLAlchemy]: http://www.sqlalchemy.org/
[read_sql]: https://pandas.pydata.org/pandas-docs/st...
[to_sql]: https://pandas.pydata.org/pandas-docs/st...
[similar question]: https://stackoverflow.com/a/13570851/386...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #mysql #datastructures #pandas
#avk47
ACCEPTED ANSWER
Score 181
Here's the shortest code that will do the job:
from pandas import DataFrame
df = DataFrame(resoverall.fetchall())
df.columns = resoverall.keys()
You can go fancier and parse the types as in Paul's answer.
ANSWER 2
Score 175
Edit: Mar. 2015
As noted below, pandas now uses SQLAlchemy to both read from (read_sql) and insert into (to_sql) a database. The following should work
import pandas as pd
df = pd.read_sql(sql, cnxn)
Previous answer: Via mikebmassey from a similar question
import pyodbc
import pandas.io.sql as psql
cnxn = pyodbc.connect(connection_info)
cursor = cnxn.cursor()
sql = "SELECT * FROM TABLE"
df = psql.frame_query(sql, cnxn)
cnxn.close()
ANSWER 3
Score 43
If you are using SQLAlchemy's ORM rather than the expression language, you might find yourself wanting to convert an object of type sqlalchemy.orm.query.Query to a Pandas data frame.
The cleanest approach is to get the generated SQL from the query's statement attribute, and then execute it with pandas's read_sql() method. E.g., starting with a Query object called query:
df = pd.read_sql(query.statement, query.session.bind)
ANSWER 4
Score 23
Edit 2014-09-30:
pandas now has a read_sql function. You definitely want to use that instead.
Original answer:
I can't help you with SQLAlchemy -- I always use pyodbc, MySQLdb, or psychopg2 as needed. But when doing so, a function as simple as the one below tends to suit my needs:
import decimal
import pyodbc #just corrected a typo here
import numpy as np
import pandas
cnn, cur = myConnectToDBfunction()
cmd = "SELECT * FROM myTable"
cur.execute(cmd)
dataframe = __processCursor(cur, dataframe=True)
def __processCursor(cur, dataframe=False, index=None):
'''
Processes a database cursor with data on it into either
a structured numpy array or a pandas dataframe.
input:
cur - a pyodbc cursor that has just received data
dataframe - bool. if false, a numpy record array is returned
if true, return a pandas dataframe
index - list of column(s) to use as index in a pandas dataframe
'''
datatypes = []
colinfo = cur.description
for col in colinfo:
if col[1] == unicode:
datatypes.append((col[0], 'U%d' % col[3]))
elif col[1] == str:
datatypes.append((col[0], 'S%d' % col[3]))
elif col[1] in [float, decimal.Decimal]:
datatypes.append((col[0], 'f4'))
elif col[1] == datetime.datetime:
datatypes.append((col[0], 'O4'))
elif col[1] == int:
datatypes.append((col[0], 'i4'))
data = []
for row in cur:
data.append(tuple(row))
array = np.array(data, dtype=datatypes)
if dataframe:
output = pandas.DataFrame.from_records(array)
if index is not None:
output = output.set_index(index)
else:
output = array
return output