Is there a NumPy function to return the first index of something in an array?
--
Music by Eric Matyas
https://www.soundimage.org
Track title: Underwater World
--
Chapters
00:00 Question
00:26 Accepted answer (Score 672)
01:01 Answer 2 (Score 90)
02:12 Answer 3 (Score 72)
02:33 Answer 4 (Score 30)
03:38 Thank you
--
Full question
https://stackoverflow.com/questions/4321...
Accepted answer links:
[np.where]: http://docs.scipy.org/doc/numpy/referenc...
Answer 4 links:
[numba]: /questions/tagged/numba
[np.ndenumerate]: https://docs.scipy.org/doc/numpy/referen...
[np.argwhere]: https://docs.scipy.org/doc/numpy/referen...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #arrays #numpy
#avk47
ACCEPTED ANSWER
Score 721
Yes, given an array, array, and a value, item to search for, you can use np.where as:
itemindex = numpy.where(array == item)
The result is a tuple with first all the row indices, then all the column indices.
For example, if an array is two dimensions and it contained your item at two locations then
array[itemindex[0][0]][itemindex[1][0]]
would be equal to your item and so would be:
array[itemindex[0][1]][itemindex[1][1]]
ANSWER 2
Score 94
If you need the index of the first occurrence of only one value, you can use nonzero (or where, which amounts to the same thing in this case):
>>> t = array([1, 1, 1, 2, 2, 3, 8, 3, 8, 8])
>>> nonzero(t == 8)
(array([6, 8, 9]),)
>>> nonzero(t == 8)[0][0]
6
If you need the first index of each of many values, you could obviously do the same as above repeatedly, but there is a trick that may be faster. The following finds the indices of the first element of each subsequence:
>>> nonzero(r_[1, diff(t)[:-1]])
(array([0, 3, 5, 6, 7, 8]),)
Notice that it finds the beginning of both subsequence of 3s and both subsequences of 8s:
[1, 1, 1, 2, 2, 3, 8, 3, 8, 8]
So it's slightly different than finding the first occurrence of each value. In your program, you may be able to work with a sorted version of t to get what you want:
>>> st = sorted(t)
>>> nonzero(r_[1, diff(st)[:-1]])
(array([0, 3, 5, 7]),)
ANSWER 3
Score 79
You can also convert a NumPy array to list in the air and get its index. For example,
l = [1,2,3,4,5] # Python list
a = numpy.array(l) # NumPy array
i = a.tolist().index(2) # i will return index of 2
print i
It will print 1.
ANSWER 4
Score 36
Just to add a very performant and handy numba alternative based on np.ndenumerate to find the first index:
from numba import njit
import numpy as np
@njit
def index(array, item):
for idx, val in np.ndenumerate(array):
if val == item:
return idx
# If no item was found return None, other return types might be a problem due to
# numbas type inference.
This is pretty fast and deals naturally with multidimensional arrays:
>>> arr1 = np.ones((100, 100, 100))
>>> arr1[2, 2, 2] = 2
>>> index(arr1, 2)
(2, 2, 2)
>>> arr2 = np.ones(20)
>>> arr2[5] = 2
>>> index(arr2, 2)
(5,)
This can be much faster (because it's short-circuiting the operation) than any approach using np.where or np.nonzero.
However np.argwhere could also deal gracefully with multidimensional arrays (you would need to manually cast it to a tuple and it's not short-circuited) but it would fail if no match is found:
>>> tuple(np.argwhere(arr1 == 2)[0])
(2, 2, 2)
>>> tuple(np.argwhere(arr2 == 2)[0])
(5,)