Pretty-print a NumPy array without scientific notation and with given precision
--
Music by Eric Matyas
https://www.soundimage.org
Track title: Cool Puzzler LoFi
--
Chapters
00:00 Question
00:39 Accepted answer (Score 726)
02:40 Answer 2 (Score 64)
03:15 Answer 3 (Score 43)
04:01 Answer 4 (Score 19)
04:35 Thank you
--
Full question
https://stackoverflow.com/questions/2891...
Accepted answer links:
[numpy.set_printoptions]: https://numpy.org/doc/stable/reference/g...
[numpy.printoptions]: https://numpy.org/doc/stable/reference/g...
Answer 2 links:
[np.array_str]: https://numpy.org/doc/stable/reference/g...
Answer 4 links:
[include a context manager for setting print options locally]: https://github.com/charris/numpy/blob/07...
[the accepted answer]: https://stackoverflow.com/a/2891805/9632...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #numpy #prettyprint
#avk47
ACCEPTED ANSWER
Score 774
Use numpy.set_printoptions to set the precision of the output:
import numpy as np
x = np.random.random(10)
print(x)
# [ 0.07837821 0.48002108 0.41274116 0.82993414 0.77610352 0.1023732
# 0.51303098 0.4617183 0.33487207 0.71162095]
np.set_printoptions(precision=3)
print(x)
# [ 0.078 0.48 0.413 0.83 0.776 0.102 0.513 0.462 0.335 0.712]
And suppress suppresses the use of scientific notation for small numbers:
y = np.array([1.5e-10, 1.5, 1500])
print(y)
# [ 1.500e-10 1.500e+00 1.500e+03]
np.set_printoptions(suppress=True)
print(y)
# [ 0. 1.5 1500. ]
To apply print options locally, using NumPy 1.15.0 or later, you could use the numpy.printoptions context manager.
For example, inside the with-suite precision=3 and suppress=True are set:
x = np.random.random(10)
with np.printoptions(precision=3, suppress=True):
print(x)
# [ 0.073 0.461 0.689 0.754 0.624 0.901 0.049 0.582 0.557 0.348]
But outside the with-suite the print options are back to default settings:
print(x)
# [ 0.07334334 0.46132615 0.68935231 0.75379645 0.62424021 0.90115836
# 0.04879837 0.58207504 0.55694118 0.34768638]
If you are using an earlier version of NumPy, you can create the context manager yourself. For example,
import numpy as np
import contextlib
@contextlib.contextmanager
def printoptions(*args, **kwargs):
original = np.get_printoptions()
np.set_printoptions(*args, **kwargs)
try:
yield
finally:
np.set_printoptions(**original)
x = np.random.random(10)
with printoptions(precision=3, suppress=True):
print(x)
# [ 0.073 0.461 0.689 0.754 0.624 0.901 0.049 0.582 0.557 0.348]
To prevent zeros from being stripped from the end of floats:
np.set_printoptions now has a formatter parameter which allows you to specify a format function for each type.
np.set_printoptions(formatter={'float': '{: 0.3f}'.format})
print(x)
which prints
[ 0.078 0.480 0.413 0.830 0.776 0.102 0.513 0.462 0.335 0.712]
instead of
[ 0.078 0.48 0.413 0.83 0.776 0.102 0.513 0.462 0.335 0.712]
ANSWER 2
Score 81
Use np.array_str to apply formatting to only a single print statement. It gives a subset of np.set_printoptions's functionality.
For example:
In [27]: x = np.array([[1.1, 0.9, 1e-6]] * 3)
In [28]: print(x)
[[ 1.10000000e+00 9.00000000e-01 1.00000000e-06]
[ 1.10000000e+00 9.00000000e-01 1.00000000e-06]
[ 1.10000000e+00 9.00000000e-01 1.00000000e-06]]
In [29]: print(np.array_str(x, precision=2))
[[ 1.10e+00 9.00e-01 1.00e-06]
[ 1.10e+00 9.00e-01 1.00e-06]
[ 1.10e+00 9.00e-01 1.00e-06]]
In [30]: print(np.array_str(x, precision=2, suppress_small=True))
[[ 1.1 0.9 0. ]
[ 1.1 0.9 0. ]
[ 1.1 0.9 0. ]]
ANSWER 3
Score 46
Unutbu gave a really complete answer (they got a +1 from me too), but here is a lo-tech alternative:
>>> x=np.random.randn(5)
>>> x
array([ 0.25276524, 2.28334499, -1.88221637, 0.69949927, 1.0285625 ])
>>> ['{:.2f}'.format(i) for i in x]
['0.25', '2.28', '-1.88', '0.70', '1.03']
As a function (using the format() syntax for formatting):
def ndprint(a, format_string ='{0:.2f}'):
print [format_string.format(v,i) for i,v in enumerate(a)]
Usage:
>>> ndprint(x)
['0.25', '2.28', '-1.88', '0.70', '1.03']
>>> ndprint(x, '{:10.4e}')
['2.5277e-01', '2.2833e+00', '-1.8822e+00', '6.9950e-01', '1.0286e+00']
>>> ndprint(x, '{:.8g}')
['0.25276524', '2.283345', '-1.8822164', '0.69949927', '1.0285625']
The index of the array is accessible in the format string:
>>> ndprint(x, 'Element[{1:d}]={0:.2f}')
['Element[0]=0.25', 'Element[1]=2.28', 'Element[2]=-1.88', 'Element[3]=0.70', 'Element[4]=1.03']
ANSWER 4
Score 17
The gem that makes it all too easy to obtain the result as a string (in today's numpy versions) is hidden in denis answer:
np.array2string
>>> import numpy as np
>>> x=np.random.random(10)
>>> np.array2string(x, formatter={'float_kind':'{0:.3f}'.format})
'[0.599 0.847 0.513 0.155 0.844 0.753 0.920 0.797 0.427 0.420]'