The Python Oracle

Replacing blank values (white space) with NaN in pandas

Become part of the top 3% of the developers by applying to Toptal https://topt.al/25cXVn

--

Music by Eric Matyas
https://www.soundimage.org
Track title: Horror Game Menu Looping

--

Chapters
00:00 Question
01:28 Accepted answer (Score 325)
02:21 Answer 2 (Score 115)
03:12 Answer 3 (Score 40)
03:35 Answer 4 (Score 40)
03:51 Thank you

--

Full question
https://stackoverflow.com/questions/1344...

Accepted answer links:
[pandas 0.13]: https://pandas.pydata.org/pandas-docs/ve...
[Temak]: https://stackoverflow.com/users/1351629/...

--

Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...

--

Tags
#python #pandas #dataframe

#avk47



ACCEPTED ANSWER

Score 349


I think df.replace() does the job, since pandas 0.13:

df = pd.DataFrame([
    [-0.532681, 'foo', 0],
    [1.490752, 'bar', 1],
    [-1.387326, 'foo', 2],
    [0.814772, 'baz', ' '],     
    [-0.222552, '   ', 4],
    [-1.176781,  'qux', '  '],         
], columns='A B C'.split(), index=pd.date_range('2000-01-01','2000-01-06'))

# replace field that's entirely space (or empty) with NaN
print(df.replace(r'^\s*$', np.nan, regex=True))

Produces:

                   A    B   C
2000-01-01 -0.532681  foo   0
2000-01-02  1.490752  bar   1
2000-01-03 -1.387326  foo   2
2000-01-04  0.814772  baz NaN
2000-01-05 -0.222552  NaN   4
2000-01-06 -1.176781  qux NaN

As Temak pointed it out, use df.replace(r'^\s+$', np.nan, regex=True) in case your valid data contains white spaces.




ANSWER 2

Score 122


If you want to replace an empty string and records with only spaces, the correct answer is!:

df = df.replace(r'^\s*$', np.nan, regex=True)

The accepted answer

df.replace(r'\s+', np.nan, regex=True)

Does not replace an empty string!, you can try yourself with the given example slightly updated:

df = pd.DataFrame([
    [-0.532681, 'foo', 0],
    [1.490752, 'bar', 1],
    [-1.387326, 'fo o', 2],
    [0.814772, 'baz', ' '],     
    [-0.222552, '   ', 4],
    [-1.176781,  'qux', ''],         
], columns='A B C'.split(), index=pd.date_range('2000-01-01','2000-01-06'))

Note, also that 'fo o' is not replaced with Nan, though it contains a space. Further note, that a simple:

df.replace(r'', np.NaN)

Does not work either - try it out.




ANSWER 3

Score 42


I did this:

df = df.apply(lambda x: x.str.strip()).replace('', np.nan)

or

df = df.apply(lambda x: x.str.strip() if isinstance(x, str) else x).replace('', np.nan)

You can strip all str, then replace empty str with np.nan.




ANSWER 4

Score 40


How about:

d = d.applymap(lambda x: np.nan if isinstance(x, basestring) and x.isspace() else x)

The applymap function applies a function to every cell of the dataframe.