The Python Oracle

pandas create new column based on values from other columns / apply a function of multiple columns, row-wise

This video explains
pandas create new column based on values from other columns / apply a function of multiple columns, row-wise

--

Become part of the top 3% of the developers by applying to Toptal
https://topt.al/25cXVn

--

Music by Eric Matyas
https://www.soundimage.org
Track title: Over a Mysterious Island

--

Chapters
00:00 Question
02:20 Accepted answer (Score 707)
04:01 Answer 2 (Score 399)
05:00 Answer 3 (Score 132)
06:51 Answer 4 (Score 42)
07:12 Thank you

--

Full question
https://stackoverflow.com/questions/2688...

Answer 1 links:
[https://stackoverflow.com/a/12555510/243...]: https://stackoverflow.com/a/12555510/243...
[apply]: https://pandas.pydata.org/pandas-docs/st...
[assign]: https://pandas.pydata.org/pandas-docs/st...

Answer 2 links:

Answer 3 links:

--

Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...

--

Tags
#python #pandas #dataframe #numpy #apply



ACCEPTED ANSWER

Score 778


OK, two steps to this - first is to write a function that does the translation you want - I've put an example together based on your pseudo-code:

def label_race(row):
   if row['eri_hispanic'] == 1:
      return 'Hispanic'
   if row['eri_afr_amer'] + row['eri_asian'] + row['eri_hawaiian'] + row['eri_nat_amer'] + row['eri_white'] > 1:
      return 'Two Or More'
   if row['eri_nat_amer'] == 1:
      return 'A/I AK Native'
   if row['eri_asian'] == 1:
      return 'Asian'
   if row['eri_afr_amer'] == 1:
      return 'Black/AA'
   if row['eri_hawaiian'] == 1:
      return 'Haw/Pac Isl.'
   if row['eri_white'] == 1:
      return 'White'
   return 'Other'

You may want to go over this, but it seems to do the trick - notice that the parameter going into the function is considered to be a Series object labelled "row".

Next, use the apply function in pandas to apply the function - e.g.

df.apply(label_race, axis=1)

Note the axis=1 specifier, that means that the application is done at a row, rather than a column level. The results are here:

0           White
1        Hispanic
2           White
3           White
4           Other
5           White
6     Two Or More
7           White
8    Haw/Pac Isl.
9           White

If you're happy with those results, then run it again, saving the results into a new column in your original dataframe.

df['race_label'] = df.apply(label_race, axis=1)

The resultant dataframe looks like this (scroll to the right to see the new column):

      lname   fname rno_cd  eri_afr_amer  eri_asian  eri_hawaiian   eri_hispanic  eri_nat_amer  eri_white rno_defined    race_label
0      MOST    JEFF      E             0          0             0              0             0          1       White         White
1    CRUISE     TOM      E             0          0             0              1             0          0       White      Hispanic
2      DEPP  JOHNNY    NaN             0          0             0              0             0          1     Unknown         White
3     DICAP     LEO    NaN             0          0             0              0             0          1     Unknown         White
4    BRANDO  MARLON      E             0          0             0              0             0          0       White         Other
5     HANKS     TOM    NaN             0          0             0              0             0          1     Unknown         White
6    DENIRO  ROBERT      E             0          1             0              0             0          1       White   Two Or More
7    PACINO      AL      E             0          0             0              0             0          1       White         White
8  WILLIAMS   ROBIN      E             0          0             1              0             0          0       White  Haw/Pac Isl.
9  EASTWOOD   CLINT      E             0          0             0              0             0          1       White         White



ANSWER 2

Score 442


Since this is the first Google result for 'pandas new column from others', here's a simple example:

import pandas as pd

# make a simple dataframe
df = pd.DataFrame({'a':[1,2], 'b':[3,4]})
df
#    a  b
# 0  1  3
# 1  2  4

# create an unattached column with an index
df.apply(lambda row: row.a + row.b, axis=1)
# 0    4
# 1    6

# do same but attach it to the dataframe
df['c'] = df.apply(lambda row: row.a + row.b, axis=1)
df
#    a  b  c
# 0  1  3  4
# 1  2  4  6

If you get the SettingWithCopyWarning you can do it this way also:

col = df.apply(lambda row: row.a + row.b, axis=1)
df = df.assign(c=col.values) # assign values to column 'c'

Source: https://stackoverflow.com/a/12555510/243392

And if your column name includes spaces you can use syntax like this:

df = df.assign(**{'some column name': col.values})

And here's the documentation for apply, and assign.




ANSWER 3

Score 143


The answers above are perfectly valid, but a vectorized solution exists, in the form of numpy.select. This allows you to define conditions, then define outputs for those conditions, much more efficiently than using apply:


First, define conditions:

conditions = [
    df['eri_hispanic'] == 1,
    df[['eri_afr_amer', 'eri_asian', 'eri_hawaiian', 'eri_nat_amer', 'eri_white']].sum(1).gt(1),
    df['eri_nat_amer'] == 1,
    df['eri_asian'] == 1,
    df['eri_afr_amer'] == 1,
    df['eri_hawaiian'] == 1,
    df['eri_white'] == 1,
]

Now, define the corresponding outputs:

outputs = [
    'Hispanic', 'Two Or More', 'A/I AK Native', 'Asian', 'Black/AA', 'Haw/Pac Isl.', 'White'
]

Finally, using numpy.select:

res = np.select(conditions, outputs, 'Other')
pd.Series(res)

0           White
1        Hispanic
2           White
3           White
4           Other
5           White
6     Two Or More
7           White
8    Haw/Pac Isl.
9           White
dtype: object

Why should numpy.select be used over apply? Here are some performance checks:

df = pd.concat([df]*1000)

In [42]: %timeit df.apply(lambda row: label_race(row), axis=1)
1.07 s ± 4.16 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [44]: %%timeit
    ...: conditions = [
    ...:     df['eri_hispanic'] == 1,
    ...:     df[['eri_afr_amer', 'eri_asian', 'eri_hawaiian', 'eri_nat_amer', 'eri_white']].sum(1).gt(1),
    ...:     df['eri_nat_amer'] == 1,
    ...:     df['eri_asian'] == 1,
    ...:     df['eri_afr_amer'] == 1,
    ...:     df['eri_hawaiian'] == 1,
    ...:     df['eri_white'] == 1,
    ...: ]
    ...:
    ...: outputs = [
    ...:     'Hispanic', 'Two Or More', 'A/I AK Native', 'Asian', 'Black/AA', 'Haw/Pac Isl.', 'White'
    ...: ]
    ...:
    ...: np.select(conditions, outputs, 'Other')
    ...:
    ...:
3.09 ms ± 17 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Using numpy.select gives us vastly improved performance, and the discrepancy will only increase as the data grows.




ANSWER 4

Score 43


.apply() takes in a function as the first parameter; pass in the label_race function as so:

df['race_label'] = df.apply(label_race, axis=1)

You don't need to make a lambda function to pass in a function.