The Python Oracle

Python Pandas: Get index of rows where column matches certain value

This video explains
Python Pandas: Get index of rows where column matches certain value

--

Become part of the top 3% of the developers by applying to Toptal
https://topt.al/25cXVn

--

Music by Eric Matyas
https://www.soundimage.org
Track title: Dreamlands

--

Chapters
00:00 Question
00:57 Accepted answer (Score 700)
02:44 Answer 2 (Score 43)
03:34 Answer 3 (Score 40)
03:49 Answer 4 (Score 4)
04:08 Thank you

--

Full question
https://stackoverflow.com/questions/2180...

--

Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...

--

Tags
#python #pandas #dataframe #indexing



ACCEPTED ANSWER

Score 800


df.iloc[i] returns the ith row of df. i does not refer to the index label, i is a 0-based index.

In contrast, the attribute index returns actual index labels, not numeric row-indices:

df.index[df['BoolCol'] == True].tolist()

or equivalently,

df.index[df['BoolCol']].tolist()

You can see the difference quite clearly by playing with a DataFrame with a non-default index that does not equal to the row's numerical position:

df = pd.DataFrame({'BoolCol': [True, False, False, True, True]},
       index=[10,20,30,40,50])

In [53]: df
Out[53]: 
   BoolCol
10    True
20   False
30   False
40    True
50    True

[5 rows x 1 columns]

In [54]: df.index[df['BoolCol']].tolist()
Out[54]: [10, 40, 50]

If you want to use the index,

In [56]: idx = df.index[df['BoolCol']]

In [57]: idx
Out[57]: Int64Index([10, 40, 50], dtype='int64')

then you can select the rows using loc instead of iloc:

In [58]: df.loc[idx]
Out[58]: 
   BoolCol
10    True
40    True
50    True

[3 rows x 1 columns]

Note that loc can also accept boolean arrays:

In [55]: df.loc[df['BoolCol']]
Out[55]: 
   BoolCol
10    True
40    True
50    True

[3 rows x 1 columns]

If you have a boolean array, mask, and need ordinal index values, you can compute them using np.flatnonzero:

In [110]: np.flatnonzero(df['BoolCol'])
Out[112]: array([0, 3, 4])

Use df.iloc to select rows by ordinal index:

In [113]: df.iloc[np.flatnonzero(df['BoolCol'])]
Out[113]: 
   BoolCol
10    True
40    True
50    True



ANSWER 2

Score 50


Can be done using numpy where() function:

import pandas as pd
import numpy as np

In [716]: df = pd.DataFrame({"gene_name": ['SLC45A1', 'NECAP2', 'CLIC4', 'ADC', 'AGBL4'] , "BoolCol": [False, True, False, True, True] },
       index=list("abcde"))

In [717]: df
Out[717]: 
  BoolCol gene_name
a   False   SLC45A1
b    True    NECAP2
c   False     CLIC4
d    True       ADC
e    True     AGBL4

In [718]: np.where(df["BoolCol"] == True)
Out[718]: (array([1, 3, 4]),)

In [719]: select_indices = list(np.where(df["BoolCol"] == True)[0])

In [720]: df.iloc[select_indices]
Out[720]: 
  BoolCol gene_name
b    True    NECAP2
d    True       ADC
e    True     AGBL4

Though you don't always need index for a match, but incase if you need:

In [796]: df.iloc[select_indices].index
Out[796]: Index([u'b', u'd', u'e'], dtype='object')

In [797]: df.iloc[select_indices].index.tolist()
Out[797]: ['b', 'd', 'e']



ANSWER 3

Score 5


First you may check query when the target column is type bool (PS: about how to use it please check link )

df.query('BoolCol')
Out[123]: 
    BoolCol
10     True
40     True
50     True

After we filter the original df by the Boolean column we can pick the index .

df=df.query('BoolCol')
df.index
Out[125]: Int64Index([10, 40, 50], dtype='int64')

Also pandas have nonzero, we just select the position of True row and using it slice the DataFrame or index

df.index[df.BoolCol.values.nonzero()[0]]
Out[128]: Int64Index([10, 40, 50], dtype='int64')



ANSWER 4

Score 5


Simple way is to reset the index of the DataFrame prior to filtering:

df_reset = df.reset_index()
df_reset[df_reset['BoolCol']].index.tolist()

Bit hacky, but it's quick!