The Python Oracle

Existence of mutable named tuple in Python?

Become part of the top 3% of the developers by applying to Toptal https://topt.al/25cXVn

--

Music by Eric Matyas
https://www.soundimage.org
Track title: Sunrise at the Stream

--

Chapters
00:00 Question
00:47 Accepted answer (Score 162)
02:56 Answer 2 (Score 71)
03:16 Answer 3 (Score 68)
05:26 Answer 4 (Score 26)
08:08 Thank you

--

Full question
https://stackoverflow.com/questions/2929...

Question links:
[namedtuple]: http://code.activestate.com/recipes/5002.../

Accepted answer links:
[recordclass]: https://pypi.python.org/pypi/recordclass
[example]: http://nbviewer.ipython.org/urls/bitbuck...
[example]: https://nbviewer.jupyter.org/urls/bitbuc...

Answer 2 links:
[types.SimpleNamespace]: https://docs.python.org/3/library/types....

Answer 3 links:
[dataclasses]: https://docs.python.org/3/library/datacl...
[PEP 526]: https://www.python.org/dev/peps/pep-0526
[Specification]: https://www.python.org/dev/peps/pep-0557...
[PEP-0557]: https://www.python.org/dev/peps/pep-0557/

Answer 4 links:
[namedlist]: https://pypi.python.org/pypi/namedlist/

--

Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...

--

Tags
#python #python3x #mutable #namedtuple

#avk47



ACCEPTED ANSWER

Score 168


There is a mutable alternative to collections.namedtuplerecordclass. It can be installed from PyPI:

pip3 install recordclass

It has the same API and memory footprint as namedtuple and it supports assignments (It should be faster as well). For example:

from recordclass import recordclass

Point = recordclass('Point', 'x y')

>>> p = Point(1, 2)
>>> p
Point(x=1, y=2)
>>> print(p.x, p.y)
1 2
>>> p.x += 2; p.y += 3; print(p)
Point(x=3, y=5)

recordclass (since 0.5) support typehints:

from recordclass import recordclass, RecordClass

class Point(RecordClass):
   x: int
   y: int

>>> Point.__annotations__
{'x':int, 'y':int}
>>> p = Point(1, 2)
>>> p
Point(x=1, y=2)
>>> print(p.x, p.y)
1 2
>>> p.x += 2; p.y += 3; print(p)
Point(x=3, y=5)

There is a more complete example (it also includes performance comparisons).

Recordclass library now provides another variant -- recordclass.make_dataclass factory function. It support dataclasses-like API (there are module level functions update, make, replace instead of self._update, self._replace, self._asdict, cls._make methods).

from recordclass import dataobject, make_dataclass

Point = make_dataclass('Point', [('x', int), ('y',int)])
Point = make_dataclass('Point', {'x':int, 'y':int})

class Point(dataobject):
   x: int
   y: int

>>> p = Point(1, 2)
>>> p
Point(x=1, y=2)
>>> p.x = 10; p.y += 3; print(p)
Point(x=10, y=5)

recordclass and make_dataclass can produce classes, whose instances occupy less memory than __slots__-based instances. This can be important for the instances with attribute values, which has not intended to have reference cycles. It may help reduce memory usage if you need to create millions of instances. Here is an illustrative example.




ANSWER 2

Score 78


types.SimpleNamespace was introduced in Python 3.3 and supports the requested requirements.

from types import SimpleNamespace
t = SimpleNamespace(foo='bar')
t.ham = 'spam'
print(t)
namespace(foo='bar', ham='spam')
print(t.foo)
'bar'
import pickle
with open('/tmp/pickle', 'wb') as f:
    pickle.dump(t, f)



ANSWER 3

Score 27


The latest namedlist 1.7 passes all of your tests with both Python 2.7 and Python 3.5 as of Jan 11, 2016. It is a pure python implementation whereas the recordclass is a C extension. Of course, it depends on your requirements whether a C extension is preferred or not.

Your tests (but also see the note below):

from __future__ import print_function
import pickle
import sys
from namedlist import namedlist

Point = namedlist('Point', 'x y')
p = Point(x=1, y=2)

print('1. Mutation of field values')
p.x *= 10
p.y += 10
print('p: {}, {}\n'.format(p.x, p.y))

print('2. String')
print('p: {}\n'.format(p))

print('3. Representation')
print(repr(p), '\n')

print('4. Sizeof')
print('size of p:', sys.getsizeof(p), '\n')

print('5. Access by name of field')
print('p: {}, {}\n'.format(p.x, p.y))

print('6. Access by index')
print('p: {}, {}\n'.format(p[0], p[1]))

print('7. Iterative unpacking')
x, y = p
print('p: {}, {}\n'.format(x, y))

print('8. Iteration')
print('p: {}\n'.format([v for v in p]))

print('9. Ordered Dict')
print('p: {}\n'.format(p._asdict()))

print('10. Inplace replacement (update?)')
p._update(x=100, y=200)
print('p: {}\n'.format(p))

print('11. Pickle and Unpickle')
pickled = pickle.dumps(p)
unpickled = pickle.loads(pickled)
assert p == unpickled
print('Pickled successfully\n')

print('12. Fields\n')
print('p: {}\n'.format(p._fields))

print('13. Slots')
print('p: {}\n'.format(p.__slots__))

Output on Python 2.7

1. Mutation of field values  
p: 10, 12

2. String  
p: Point(x=10, y=12)

3. Representation  
Point(x=10, y=12) 

4. Sizeof  
size of p: 64 

5. Access by name of field  
p: 10, 12

6. Access by index  
p: 10, 12

7. Iterative unpacking  
p: 10, 12

8. Iteration  
p: [10, 12]

9. Ordered Dict  
p: OrderedDict([('x', 10), ('y', 12)])

10. Inplace replacement (update?)  
p: Point(x=100, y=200)

11. Pickle and Unpickle  
Pickled successfully

12. Fields  
p: ('x', 'y')

13. Slots  
p: ('x', 'y')

The only difference with Python 3.5 is that the namedlist has become smaller, the size is 56 (Python 2.7 reports 64).

Note that I have changed your test 10 for in-place replacement. The namedlist has a _replace() method which does a shallow copy, and that makes perfect sense to me because the namedtuple in the standard library behaves the same way. Changing the semantics of the _replace() method would be confusing. In my opinion the _update() method should be used for in-place updates. Or maybe I failed to understand the intent of your test 10?




ANSWER 4

Score 25


It seems like the answer to this question is no.

Below is pretty close, but it's not technically mutable. This is creating a new namedtuple() instance with an updated x value:

Point = namedtuple('Point', ['x', 'y'])
p = Point(0, 0)
p = p._replace(x=10) 

On the other hand, you can create a simple class using __slots__ that should work well for frequently updating class instance attributes:

class Point:
    __slots__ = ['x', 'y']
    def __init__(self, x, y):
        self.x = x
        self.y = y

To add to this answer, I think __slots__ is good use here because it's memory efficient when you create lots of class instances. The only downside is that you can't create new class attributes.

Here's one relevant thread that illustrates the memory efficiency - Dictionary vs Object - which is more efficient and why?

The quoted content in the answer of this thread is a very succinct explanation why __slots__ is more memory efficient - Python slots