How to add pandas data to an existing csv file?
--
Music by Eric Matyas
https://www.soundimage.org
Track title: Mysterious Puzzle
--
Chapters
00:00 Question
00:28 Accepted answer (Score 909)
01:00 Answer 2 (Score 279)
01:48 Answer 3 (Score 99)
02:06 Answer 4 (Score 25)
02:29 Thank you
--
Full question
https://stackoverflow.com/questions/1753...
Accepted answer links:
[to_csv]: http://pandas.pydata.org/pandas-docs/sta...
Answer 2 links:
[opening the file]: http://docs.python.org/2/library/functio...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #pandas #csv #dataframe
#avk47
ACCEPTED ANSWER
Score 985
You can specify a python write mode in the pandas to_csv function. For append it is 'a'.
In your case:
df.to_csv('my_csv.csv', mode='a', header=False)
The default mode is 'w'.
If the file initially might be missing, you can make sure the header is printed at the first write using this variation:
output_path='my_csv.csv'
df.to_csv(output_path, mode='a', header=not os.path.exists(output_path))
ANSWER 2
Score 281
You can append to a csv by opening the file in append mode:
with open('my_csv.csv', 'a') as f:
df.to_csv(f, header=False)
If this was your csv, foo.csv:
,A,B,C
0,1,2,3
1,4,5,6
If you read that and then append, for example, df + 6:
In [1]: df = pd.read_csv('foo.csv', index_col=0)
In [2]: df
Out[2]:
A B C
0 1 2 3
1 4 5 6
In [3]: df + 6
Out[3]:
A B C
0 7 8 9
1 10 11 12
In [4]: with open('foo.csv', 'a') as f:
(df + 6).to_csv(f, header=False)
foo.csv becomes:
,A,B,C
0,1,2,3
1,4,5,6
0,7,8,9
1,10,11,12
ANSWER 3
Score 25
A little helper function I use with some header checking safeguards to handle it all:
def appendDFToCSV_void(df, csvFilePath, sep=","):
import os
if not os.path.isfile(csvFilePath):
df.to_csv(csvFilePath, mode='a', index=False, sep=sep)
elif len(df.columns) != len(pd.read_csv(csvFilePath, nrows=1, sep=sep).columns):
raise Exception("Columns do not match!! Dataframe has " + str(len(df.columns)) + " columns. CSV file has " + str(len(pd.read_csv(csvFilePath, nrows=1, sep=sep).columns)) + " columns.")
elif not (df.columns == pd.read_csv(csvFilePath, nrows=1, sep=sep).columns).all():
raise Exception("Columns and column order of dataframe and csv file do not match!!")
else:
df.to_csv(csvFilePath, mode='a', index=False, sep=sep, header=False)
ANSWER 4
Score 6
Initially starting with a pyspark dataframes - I got type conversion errors (when converting to pandas df's and then appending to csv) given the schema/column types in my pyspark dataframes
Solved the problem by forcing all columns in each df to be of type string and then appending this to csv as follows:
with open('testAppend.csv', 'a') as f:
df2.toPandas().astype(str).to_csv(f, header=False)