The Python Oracle

How to expand/flatten pandas dataframe efficiently

Become part of the top 3% of the developers by applying to Toptal https://topt.al/25cXVn

--

Music by Eric Matyas
https://www.soundimage.org
Track title: Puzzle Game 5

--

Chapters
00:00 Question
01:26 Accepted answer (Score 1)
02:13 Answer 2 (Score 4)
03:36 Answer 3 (Score 2)
06:53 Thank you

--

Full question
https://stackoverflow.com/questions/4216...

Answer 1 links:
[numpy.repeat]: https://docs.scipy.org/doc/numpy/referen...
[numpy.repeat]: https://docs.scipy.org/doc/numpy/referen...
[numpy.hstack]: https://docs.scipy.org/doc/numpy/referen...
[numpy.column_stack]: https://docs.scipy.org/doc/numpy/referen...

Answer 2 links:
[leads to quadratic copying]: https://stackoverflow.com/a/36489724/190...

--

Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...

--

Tags
#python #pandas

#avk47



ANSWER 1

Score 4


You can use numpy for better performance:

Both solutions use mainly numpy.repeat.

from  itertools import chain

vals = df.fields.str.len()
df1 = pd.DataFrame({
        "id": np.repeat(df.id.values,vals),
        "name": np.repeat(df.name.values, vals),
        "fields": list(chain.from_iterable(df.fields))})
df1 = df1.reindex_axis(df.columns, axis=1)
print (df1)
   id name fields
0   1  abc     qq
1   1  abc     ww
2   1  abc     rr
3   2  efg     zz
4   2  efg     xx
5   2  efg     rr

Another solution:

df[['id','name']].values converts columns to numpy array and duplicate them by numpy.repeat, then stack values in lists by numpy.hstack and add it by numpy.column_stack.

df1 = pd.DataFrame(np.column_stack((df[['id','name']].values.
                   repeat(list(map(len,df.fields)),axis=0),np.hstack(df.fields))),
                   columns=df.columns)

print (df1)
  id name fields
0  1  abc     qq
1  1  abc     ww
2  1  abc     rr
3  2  efg     zz
4  2  efg     xx
5  2  efg     rr

More general solution is filter out column fields and then add it to DataFrame constructor, because always last column:

cols = df.columns[df.columns != 'fields'].tolist()
print (cols)
['id', 'name']

df1 = pd.DataFrame(np.column_stack((df[cols].values.
                   repeat(list(map(len,df.fields)),axis=0),np.hstack(df.fields))), 
                   columns=cols + ['fields'])

print (df1)
  id name fields
0  1  abc     qq
1  1  abc     ww
2  1  abc     rr
3  2  efg     zz
4  2  efg     xx
5  2  efg     rr



ANSWER 2

Score 2


If your CSV is many thousands of lines long, then using_string_methods (below) may be faster than using_iterrows or using_repeat:

With

csv = 'id|name|fields'+("""
1|abc|[qq,ww,rr]
2|efg|[zz,xx,rr]"""*10000)

In [210]: %timeit using_string_methods(csv)
10 loops, best of 3: 100 ms per loop

In [211]: %timeit using_itertuples(csv)
10 loops, best of 3: 119 ms per loop

In [212]: %timeit using_repeat(csv)
10 loops, best of 3: 126 ms per loop

In [213]: %timeit using_iterrows(csv)
1 loop, best of 3: 1min 7s per loop

So for a 10000-line CSV, using_string_methods is over 600x faster than using_iterrows, and marginally faster than using_repeat.


import pandas as pd
try: from cStringIO import StringIO         # for Python2
except ImportError: from io import StringIO # for Python3

def using_string_methods(csv):
    df = pd.read_csv(StringIO(csv), sep='|', dtype=None)
    other_columns = df.columns.difference(['fields']).tolist()
    fields = (df['fields'].str.extract(r'\[(.*)\]', expand=False)
              .str.split(r',', expand=True))
    df = pd.concat([df.drop('fields', axis=1), fields], axis=1)
    result = (pd.melt(df, id_vars=other_columns, value_name='field')
              .drop('variable', axis=1))
    result = result.dropna(subset=['field'])
    return result


def using_iterrows(csv):
    df = pd.read_csv(StringIO(csv), sep='|')
    df.fields = df.fields.apply(lambda s: s[1:-1].split(','))
    new_df = pd.DataFrame(index=[], columns=df.columns)

    for _, i in df.iterrows():
        flattened_d = [dict(i.to_dict(), fields=c) for c in i.fields]
        new_df = new_df.append(flattened_d )
    return new_df

def using_repeat(csv):
    df = pd.read_csv(StringIO(csv), sep='|')
    df.fields = df.fields.apply(lambda s: s[1:-1].split(','))
    cols = df.columns[df.columns != 'fields'].tolist()
    df1 = pd.DataFrame(np.column_stack(
        (df[cols].values.repeat(list(map(len,df.fields)),axis=0),
         np.hstack(df.fields))), columns=cols + ['fields'])
    return df1

def using_itertuples(csv):
    df = pd.read_csv(StringIO(csv), sep='|')
    df.fields = df.fields.apply(lambda s: s[1:-1].split(','))
    other_columns = df.columns.difference(['fields']).tolist()
    data = []
    for tup in df.itertuples():
        data.extend([[getattr(tup, col) for col in other_columns]+[field] 
                     for field in tup.fields])
    return pd.DataFrame(data, columns=other_columns+['field'])

csv = 'id|name|fields'+("""
1|abc|[qq,ww,rr]
2|efg|[zz,xx,rr]"""*10000)

Generally, fast NumPy/Pandas operations are possible only when the data is in a native NumPy dtype (such as int64 or float64, or strings.) Once you place lists (a non-native NumPy dtype) in a DataFrame the jig is up -- you are forced to use Python-speed loops to process the lists.

So to improve performance, you need to avoid placing lists in a DataFrame.

using_string_methods loads the fields data as strings:

df = pd.read_csv(StringIO(csv), sep='|', dtype=None)

and avoid using the apply method (which is generally as slow as a plain Python loop):

df.fields = df.fields.apply(lambda s: s[1:-1].split(','))

Instead, it uses faster vectorized string methods to break the strings up into separate columns:

fields = (df['fields'].str.extract(r'\[(.*)\]', expand=False)
          .str.split(r',', expand=True))

Once you have the fields in separate columns, you can use pd.melt to reshape the DataFrame into the desired format.

pd.melt(df, id_vars=['id', 'name'], value_name='field')

By the way, you might be interested to see that with a slight modification using_iterrows can be just as fast as using_repeat. I show the changes in using_itertuples. df.itertuples tends to be slightly faster than df.iterrows, but the difference is minor. The majority of the speed gain is achieved by avoiding calling df.append in a for-loop since that leads to quadratic copying.




ACCEPTED ANSWER

Score 1


You can break the lists in the fields column into multiple columns by applying pandas.Series to fields and then merging to id and name like so:

cols = df.columns[df.columns != 'fields'].tolist() # adapted from @jezrael 
df = df[cols].join(df.fields.apply(pandas.Series))

Then you can melt the resulting new columns using set_index and stack, and then reseting the index:

df = df.set_index(cols).stack().reset_index()

Finally, drop the redundant column generated by reset_index and rename the generated column to "field":

df = df.drop(df.columns[-2], axis=1).rename(columns={0: 'field'})