Create numpy matrix filled with NaNs
--
Track title: CC F Haydns String Quartet No 53 in D
--
Chapters
00:00 Question
00:31 Accepted answer (Score 381)
01:38 Answer 2 (Score 258)
02:02 Answer 3 (Score 77)
02:56 Answer 4 (Score 27)
03:33 Thank you
--
Full question
https://stackoverflow.com/questions/1704...
Answer 1 links:
[numpy.full]: https://docs.scipy.org/doc/numpy/referen...
Answer 2 links:
[image]: https://i.stack.imgur.com/oGR81.png
Answer 3 links:
[mailing list thread]: http://www.mail-archive.com/numpy-discus...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #numpy
#avk47
ACCEPTED ANSWER
Score 408
You rarely need loops for vector operations in numpy. You can create an uninitialized array and assign to all entries at once:
>>> a = numpy.empty((3,3,))
>>> a[:] = numpy.nan
>>> a
array([[ NaN, NaN, NaN],
[ NaN, NaN, NaN],
[ NaN, NaN, NaN]])
I have timed the alternatives a[:] = numpy.nan here and a.fill(numpy.nan) as posted by Blaenk:
$ python -mtimeit "import numpy as np; a = np.empty((100,100));" "a.fill(np.nan)"
10000 loops, best of 3: 54.3 usec per loop
$ python -mtimeit "import numpy as np; a = np.empty((100,100));" "a[:] = np.nan"
10000 loops, best of 3: 88.8 usec per loop
The timings show a preference for ndarray.fill(..) as the faster alternative. OTOH, I like numpy's convenience implementation where you can assign values to whole slices at the time, the code's intention is very clear.
Note that ndarray.fill performs its operation in-place, so numpy.empty((3,3,)).fill(numpy.nan) will instead return None.
ANSWER 2
Score 299
Another option is to use numpy.full, an option available in NumPy 1.8+
a = np.full([height, width, 9], np.nan)
This is pretty flexible and you can fill it with any other number that you want.
ANSWER 3
Score 28
Are you familiar with numpy.nan?
You can create your own method such as:
def nans(shape, dtype=float):
a = numpy.empty(shape, dtype)
a.fill(numpy.nan)
return a
Then
nans([3,4])
would output
array([[ NaN, NaN, NaN, NaN],
[ NaN, NaN, NaN, NaN],
[ NaN, NaN, NaN, NaN]])
I found this code in a mailing list thread.
ANSWER 4
Score 14
You can always use multiplication if you don't immediately recall the .empty or .full methods:
>>> np.nan * np.ones(shape=(3,2))
array([[ nan, nan],
[ nan, nan],
[ nan, nan]])
Of course it works with any other numerical value as well:
>>> 42 * np.ones(shape=(3,2))
array([[ 42, 42],
[ 42, 42],
[ 42, 42]])
But the @u0b34a0f6ae's accepted answer is 3x faster (CPU cycles, not brain cycles to remember numpy syntax ;):
$ python -mtimeit "import numpy as np; X = np.empty((100,100));" "X[:] = np.nan;"
100000 loops, best of 3: 8.9 usec per loop
(predict)laneh@predict:~/src/predict/predict/webapp$ master
$ python -mtimeit "import numpy as np; X = np.ones((100,100));" "X *= np.nan;"
10000 loops, best of 3: 24.9 usec per loop