The Python Oracle

Why does range(start, end) not include end?

Become part of the top 3% of the developers by applying to Toptal https://topt.al/25cXVn

--

Music by Eric Matyas
https://www.soundimage.org
Track title: Lost Jungle Looping

--

Chapters
00:00 Question
00:24 Accepted answer (Score 311)
01:34 Answer 2 (Score 72)
03:46 Answer 3 (Score 25)
04:11 Answer 4 (Score 20)
05:10 Thank you

--

Full question
https://stackoverflow.com/questions/4504...

--

Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...

--

Tags
#python #range

#avk47



ACCEPTED ANSWER

Score 323


Because it's more common to call range(0, 10) which returns [0,1,2,3,4,5,6,7,8,9] which contains 10 elements which equals len(range(0, 10)). There's a tendency in programming to use 0-based indexing.

Also, consider the following common code snippet:

for i in range(len(li)):
    pass

Could you see that if range() went up to exactly len(li) that this would be problematic? The programmer would need to explicitly subtract 1. This also follows the common trend of programmers preferring for(int i = 0; i < 10; i++) over for(int i = 0; i <= 9; i++).

If you are calling range with a start of 1 frequently, you might want to define your own function:

>>> def range1(start, end):
...     return range(start, end+1)
...
>>> range1(1, 10)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]



ANSWER 2

Score 27


Exclusive ranges do have some benefits:

For one thing each item in range(0,n) is a valid index for lists of length n.

Also range(0,n) has a length of n, not n+1 which an inclusive range would.




ANSWER 3

Score 23


It's also useful for splitting ranges; range(a,b) can be split into range(a, x) and range(x, b), whereas with inclusive range you would write either x-1 or x+1. While you rarely need to split ranges, you do tend to split lists quite often, which is one of the reasons slicing a list l[a:b] includes the a-th element but not the b-th. Then range having the same property makes it nicely consistent.




ANSWER 4

Score 20


It works well in combination with zero-based indexing and len(). For example, if you have 10 items in a list x, they are numbered 0-9. range(len(x)) gives you 0-9.

Of course, people will tell you it's more Pythonic to do for item in x or for index, item in enumerate(x) rather than for i in range(len(x)).

Slicing works that way too: foo[1:4] is items 1-3 of foo (keeping in mind that item 1 is actually the second item due to the zero-based indexing). For consistency, they should both work the same way.

I think of it as: "the first number you want, followed by the first number you don't want." If you want 1-10, the first number you don't want is 11, so it's range(1, 11).

If it becomes cumbersome in a particular application, it's easy enough to write a little helper function that adds 1 to the ending index and calls range().