How does tf.keras.layers.Conv2D with padding='same' and strides > 1 behave?
Rise to the top 3% as a developer or hire one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: Beneath the City Looping
--
Chapters
00:00 How Does Tf.Keras.Layers.Conv2d With Padding='Same' And Strides ≫ 1 Behave?
00:44 Accepted Answer Score 9
02:24 Answer 2 Score 3
02:42 Thank you
--
Full question
https://stackoverflow.com/questions/5381...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #tensorflow #convneuralnetwork
#avk47
ACCEPTED ANSWER
Score 9
Keras uses TensorFlow implementation of padding. All the details are available in the documentation here
First, consider the 'SAME' padding scheme. A detailed explanation of the reasoning behind it is given in these notes. Here, we summarize the mechanics of this padding scheme. When using 'SAME', the output height and width are computed as:
out_height = ceil(float(in_height) / float(strides[1])) out_width = ceil(float(in_width) / float(strides[2]))The total padding applied along the height and width is computed as:
if (in_height % strides[1] == 0): pad_along_height = max(filter_height - strides[1], 0) else: pad_along_height = max(filter_height - (in_height % strides[1]), 0) if (in_width % strides[2] == 0): pad_along_width = max(filter_width - strides[2], 0) else: pad_along_width = max(filter_width - (in_width % strides[2]), 0)Finally, the padding on the top, bottom, left and right are:
pad_top = pad_along_height // 2 pad_bottom = pad_along_height - pad_top pad_left = pad_along_width // 2 pad_right = pad_along_width - pad_leftNote that the division by 2 means that there might be cases when the padding on both sides (top vs bottom, right vs left) are off by one. In this case, the bottom and right sides always get the one additional padded pixel. For example, when pad_along_height is 5, we pad 2 pixels at the top and 3 pixels at the bottom. Note that this is different from existing libraries such as cuDNN and Caffe, which explicitly specify the number of padded pixels and always pad the same number of pixels on both sides.
For the 'VALID' scheme, the output height and width are computed as:
out_height = ceil(float(in_height - filter_height + 1) / float(strides[1])) out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))and no padding is used.
ANSWER 2
Score 3
In tensorflow, for stride s and input size n, padding with same gives:
⌈n/s⌉
or the ceiling of input size divided by stride.