The Python Oracle

How do I split a list into equally-sized chunks?

--------------------------------------------------
Rise to the top 3% as a developer or hire one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------

Music by Eric Matyas
https://www.soundimage.org
Track title: Music Box Puzzles

--

Chapters
00:00 How Do I Split A List Into Equally-Sized Chunks?
00:28 Accepted Answer Score 4425
00:52 Answer 2 Score 661
01:09 Answer 3 Score 435
01:31 Answer 4 Score 360
02:33 Answer 5 Score 307
04:23 Thank you

--

Full question
https://stackoverflow.com/questions/3124...

--

Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...

--

Tags
#python #list #split #chunks

#avk47



ACCEPTED ANSWER

Score 4467


Here's a generator that yields evenly-sized chunks:

def chunks(lst, n):
    """Yield successive n-sized chunks from lst."""
    for i in range(0, len(lst), n):
        yield lst[i:i + n]
import pprint
pprint.pprint(list(chunks(range(10, 75), 10)))
[[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
 [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
 [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
 [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
 [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
 [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
 [70, 71, 72, 73, 74]]

For Python 2, using xrange instead of range:

def chunks(lst, n):
    """Yield successive n-sized chunks from lst."""
    for i in xrange(0, len(lst), n):
        yield lst[i:i + n]

Below is a list comprehension one-liner. The method above is preferable, though, since using named functions makes code easier to understand. For Python 3:

[lst[i:i + n] for i in range(0, len(lst), n)]

For Python 2:

[lst[i:i + n] for i in xrange(0, len(lst), n)]



ANSWER 2

Score 667


Something super simple:

def chunks(xs, n):
    n = max(1, n)
    return (xs[i:i+n] for i in range(0, len(xs), n))

For Python 2, use xrange() instead of range().




ANSWER 3

Score 445


I know this is kind of old but nobody yet mentioned numpy.array_split:

import numpy as np

lst = range(50)
np.array_split(lst, 5)

Result:

[array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
 array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19]),
 array([20, 21, 22, 23, 24, 25, 26, 27, 28, 29]),
 array([30, 31, 32, 33, 34, 35, 36, 37, 38, 39]),
 array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49])]



ANSWER 4

Score 365


Directly from the (old) Python documentation (recipes for itertools):

from itertools import izip, chain, repeat

def grouper(n, iterable, padvalue=None):
    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
    return izip(*[chain(iterable, repeat(padvalue, n-1))]*n)

The current version, as suggested by J.F.Sebastian:

#from itertools import izip_longest as zip_longest # for Python 2.x
from itertools import zip_longest # for Python 3.x
#from six.moves import zip_longest # for both (uses the six compat library)

def grouper(n, iterable, padvalue=None):
    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
    return zip_longest(*[iter(iterable)]*n, fillvalue=padvalue)

I guess Guido's time machine works—worked—will work—will have worked—was working again.

These solutions work because [iter(iterable)]*n (or the equivalent in the earlier version) creates one iterator, repeated n times in the list. izip_longest then effectively performs a round-robin of "each" iterator; because this is the same iterator, it is advanced by each such call, resulting in each such zip-roundrobin generating one tuple of n items.

Python ≥3.12

itertools.batched is available.