Scikit-learn: How to calculate the True Negative
--------------------------------------------------
Rise to the top 3% as a developer or hire one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: Magical Minnie Puzzles
--
Chapters
00:00 Scikit-Learn: How To Calculate The True Negative
00:30 Accepted Answer Score 9
01:01 Thank you
--
Full question
https://stackoverflow.com/questions/3134...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #machinelearning #scikitlearn #supervisedlearning
#avk47
Rise to the top 3% as a developer or hire one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: Magical Minnie Puzzles
--
Chapters
00:00 Scikit-Learn: How To Calculate The True Negative
00:30 Accepted Answer Score 9
01:01 Thank you
--
Full question
https://stackoverflow.com/questions/3134...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #machinelearning #scikitlearn #supervisedlearning
#avk47
ACCEPTED ANSWER
Score 9
I think you should treat this multi-class classification in a one-vs-the-rest manner (so each 2x2 table i measures the performance of a binary classification problem that whether each obs belongs to label i or not). Consequently, you can calculate the TP, FP, FN, TN for each individual label.
import numpy as np
confusion_matrix = np.array([[2,0,3,4],
[0,4,5,1],
[1,0,3,2],
[5,0,0,4]])
def process_cm(confusion_mat, i=0, to_print=True):
# i means which class to choose to do one-vs-the-rest calculation
# rows are actual obs whereas columns are predictions
TP = confusion_mat[i,i] # correctly labeled as i
FP = confusion_mat[:,i].sum() - TP # incorrectly labeled as i
FN = confusion_mat[i,:].sum() - TP # incorrectly labeled as non-i
TN = confusion_mat.sum().sum() - TP - FP - FN
if to_print:
print('TP: {}'.format(TP))
print('FP: {}'.format(FP))
print('FN: {}'.format(FN))
print('TN: {}'.format(TN))
return TP, FP, FN, TN
for i in range(4):
print('Calculating 2x2 contigency table for label{}'.format(i))
process_cm(confusion_matrix, i, to_print=True)
Calculating 2x2 contigency table for label0
TP: 2
FP: 6
FN: 7
TN: 19
Calculating 2x2 contigency table for label1
TP: 4
FP: 0
FN: 6
TN: 24
Calculating 2x2 contigency table for label2
TP: 3
FP: 8
FN: 3
TN: 20
Calculating 2x2 contigency table for label3
TP: 4
FP: 7
FN: 5
TN: 18