To check Pandas Dataframe column for TRUE/FALSE, if TRUE check another column for condition to satisfy and generate new column with values PASS/FAIL
--------------------------------------------------
Rise to the top 3% as a developer or hire one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: Puddle Jumping Looping
--
Chapters
00:00 To Check Pandas Dataframe Column For True/False, If True Check Another Column For Condition To Satis
01:04 Answer 1 Score 5
01:09 Accepted Answer Score 3
01:30 Thank you
--
Full question
https://stackoverflow.com/questions/6265...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #pandas #numpy #dataframe #boolean
#avk47
    Rise to the top 3% as a developer or hire one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: Puddle Jumping Looping
--
Chapters
00:00 To Check Pandas Dataframe Column For True/False, If True Check Another Column For Condition To Satis
01:04 Answer 1 Score 5
01:09 Accepted Answer Score 3
01:30 Thank you
--
Full question
https://stackoverflow.com/questions/6265...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #pandas #numpy #dataframe #boolean
#avk47
ANSWER 1
Score 5
Another solution
from pandas import DataFrame
names = {
    'Space': ['TRUE','TRUE','FALSE','FALSE'],
    'Threshold': [0.1, 0.25, 1, 2]
         }
df = DataFrame(names,columns=['Space','Threshold'])
df.loc[(df['Space'] == 'TRUE') & (df['Threshold'] <= 0.2), 'Space_Test'] = 'Pass'
df.loc[(df['Space'] != 'TRUE') | (df['Threshold'] > 0.2), 'Space_Test'] = 'Fail'
print (df)
ACCEPTED ANSWER
Score 3
If TRUE are boolean your solution is simplify by compare by df['Space'] only:
df['Space_Test'] = np.where(df['Space'],
                   np.where(df['Threshold'] <= 0.2, 'Pass', 'Fail'),'FALSE')
print (df)
   Space  Threshold Space_Test
0   True       0.10       Pass
1   True       0.25       Fail
2  False       0.50      FALSE
3  False       0.60      FALSE
Alternative with numpy.select:
m1 = df['Space']
m2 = df['Threshold'] <= 0.2
df['Space_Test'] = np.select([m1 & m2, m1 & ~m2], ['Pass', 'Fail'],'FALSE')
print (df)
   Space  Threshold Space_Test
0   True       0.10       Pass
1   True       0.25       Fail
2  False       0.50      FALSE
3  False       0.60      FALSE