check if dataframe is of boolean type pandas
--------------------------------------------------
Rise to the top 3% as a developer or hire one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: Ancient Construction
--
Chapters
00:00 Check If Dataframe Is Of Boolean Type Pandas
00:32 Accepted Answer Score 10
01:13 Answer 2 Score 1
02:02 Thank you
--
Full question
https://stackoverflow.com/questions/2198...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #pandas #dataframe
#avk47
    Rise to the top 3% as a developer or hire one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: Ancient Construction
--
Chapters
00:00 Check If Dataframe Is Of Boolean Type Pandas
00:32 Accepted Answer Score 10
01:13 Answer 2 Score 1
02:02 Thank you
--
Full question
https://stackoverflow.com/questions/2198...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #pandas #dataframe
#avk47
ACCEPTED ANSWER
Score 10
You can print the dtypes of the columns:
In [2]:
import pandas as pd
 
df = pd.DataFrame({'a':[True,False,False]})
df
Out[2]:
       a
0   True
1  False
2  False
[3 rows x 1 columns]
In [3]:
df.dtypes
Out[3]:
a    bool
dtype: object
In [4]:
df.a.dtypes
Out[4]:
dtype('bool')
In your case, df1.v.dtypes should print the same output as above
The other thing to note that isinstance(df, bool) will not work as it is a pandas dataframe or more accurately:
In [7]:
type(df)
Out[7]:
pandas.core.frame.DataFrame
The important thing to note is that dtypes is in fact a numpy.dtype you can do this to compare the name of the type with a string but I think isinstance is clearer and preferable in my opinion:
In [13]:
df.a.dtypes.name == 'bool'
Out[13]:
True
ANSWER 2
Score 1
To get the dtype of a specific column, you have two ways:
- Use 
DataFrame.dtypeswhich returns a Series whose index is the column header. 
$ df.dtypes.loc['v']
bool
- Use 
Series.dtypeorSeries.dtypesto get the dtype of a column. InternallySeries.dtypescallsSeries.dtypeto get the result, so they are the same. 
$ df['v'].dtype
bool
$ df['v'].dtypes
bool
All of the results return the same type
$ type(df.dtypes.loc['v'])
<class 'numpy.dtype[bool_]'>
$ type(df['v'].dtype)
<class 'numpy.dtype[bool_]'>
To check if it is a bool type also has multiple ways
$ df['v'].dtype == 'bool'
True
$ np.issubdtype(df['v'].dtype, bool)
True
$ df['v'].dtype.type is np.bool_
True
You can also select the columns with specific types with DataFrame.select_dtypes
$ df.select_dtypes('bool')
       v
0  False
1  False
2  False