Pandas Percentage count on a DataFrame groupby
--------------------------------------------------
Rise to the top 3% as a developer or hire one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: Techno Bleepage Open
--
Chapters
00:00 Pandas Percentage Count On A Dataframe Groupby
00:51 Accepted Answer Score 16
01:05 Answer 2 Score 1
01:40 Answer 3 Score 0
01:53 Answer 4 Score 0
02:21 Thank you
--
Full question
https://stackoverflow.com/questions/3212...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #pandas
#avk47
Rise to the top 3% as a developer or hire one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: Techno Bleepage Open
--
Chapters
00:00 Pandas Percentage Count On A Dataframe Groupby
00:51 Accepted Answer Score 16
01:05 Answer 2 Score 1
01:40 Answer 3 Score 0
01:53 Answer 4 Score 0
02:21 Thank you
--
Full question
https://stackoverflow.com/questions/3212...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #pandas
#avk47
ACCEPTED ANSWER
Score 16
Could be just this:
In [73]:
print pd.DataFrame({'Percentage': df.groupby(('ID', 'Feature')).size() / len(df)})
Percentage
ID Feature
0 False 0.2
True 0.3
1 False 0.3
True 0.2
ANSWER 2
Score 1
In [2]: df = pd.DataFrame({'Index': {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, 7: 8, 8: 9, 9: 10},
...: 'Feature': {0: True, 1: True, 2: False, 3: True, 4: False, 5: False, 6: True, 7: False, 8: False, 9: True},
...: 'ID': {0: 1, 1: 1, 2: 0, 3: 0, 4: 1, 5: 1, 6: 0, 7: 0, 8: 1, 9: 0},
...: 'Stuff1': {0: 23, 1: 54, 2: 45, 3: 38, 4: 32, 5: 59, 6: 37, 7: 76, 8: 32, 9: 23},
...: 'Stuff2': {0: 12, 1: 12, 2: 67, 3: 29, 4: 24, 5: 39, 6: 32, 7: 65, 8: 12, 9: 15}}).sort_values(["ID", "Feature"])
...: df
Out[2]:
Index Feature ID Stuff1 Stuff2
2 3 False 0 45 67
7 8 False 0 76 65
3 4 True 0 38 29
6 7 True 0 37 32
9 10 True 0 23 15
4 5 False 1 32 24
5 6 False 1 59 39
8 9 False 1 32 12
0 1 True 1 23 12
1 2 True 1 54 12
In [3]: f = df.drop_duplicates(subset=['Feature', 'ID'])
...: f2 = (df.groupby(["Feature", "ID"]).agg('count')/len(df)*100).iloc[:, 0].reset_index().rename(columns={"Index" : "Percent"})
...: f2['Percent'] = f2['Percent'].astype(int).astype(str) + "%"
...: f2
Out[3]:
Feature ID Percent
0 False 0 20%
1 False 1 30%
2 True 0 30%
3 True 1 20%
ANSWER 3
Score 0
You can use pd.crosstab:
>>> newdf = pd.crosstab(index=mydf['Feature'], columns=mydf['ID']).stack()/len(mydf)
>>> print(newdf)
Feature ID
False 0 0.2
1 0.3
True 0 0.3
1 0.2
dtype: float64
ANSWER 4
Score 0
You could also use the tableone package for this. Create the sample dataframe:
# Create df with 10 rows.
df = pd.DataFrame({'Feature': [True,True,False,True,False,False,True,False,False,True],
'ID': [1,1,0,0,1,1,0,0,1,0],
'Stuff1': [23,54,45,38,32,59,37,76,32,23],
'Stuff2': [12,12,67,29,24,39,32,65,12,15]})
Input:
# Import the tableone package (v0.5.18)
from tableone import TableOne
# Create the table, specifying feature and id as categorical
TableOne(df, columns=['Feature','ID'],
categorical=['Feature','ID'],
label_suffix=True)
Output:

