Concatenating two one-dimensional NumPy arrays
Rise to the top 3% as a developer or hire one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: Puddle Jumping Looping
--
Chapters
00:00 Concatenating Two One-Dimensional Numpy Arrays
00:22 Answer 1 Score 40
00:35 Accepted Answer Score 553
01:04 Answer 3 Score 14
01:42 Answer 4 Score 85
02:12 Thank you
--
Full question
https://stackoverflow.com/questions/9236...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #arrays #numpy #concatenation #numpyndarray
#avk47
ACCEPTED ANSWER
Score 553
Use:
np.concatenate([a, b])
The arrays you want to concatenate need to be passed in as a sequence, not as separate arguments.
From the NumPy documentation:
numpy.concatenate((a1, a2, ...), axis=0)Join a sequence of arrays together.
It was trying to interpret your b as the axis parameter, which is why it complained it couldn't convert it into a scalar.
ANSWER 2
Score 85
There are several possibilities for concatenating 1D arrays, e.g.,
import numpy as np
np.r_[a, a]
np.stack([a, a]).reshape(-1)
np.hstack([a, a])
np.concatenate([a, a])
All those options are equally fast for large arrays; for small ones, concatenate has a slight edge:
The plot was created with perfplot:
import numpy
import perfplot
perfplot.show(
setup=lambda n: numpy.random.rand(n),
kernels=[
lambda a: numpy.r_[a, a],
lambda a: numpy.stack([a, a]).reshape(-1),
lambda a: numpy.hstack([a, a]),
lambda a: numpy.concatenate([a, a]),
],
labels=["r_", "stack+reshape", "hstack", "concatenate"],
n_range=[2 ** k for k in range(19)],
xlabel="len(a)",
)
ANSWER 3
Score 40
The first parameter to concatenate should itself be a sequence of arrays to concatenate:
numpy.concatenate((a,b)) # Note the extra parentheses.
ANSWER 4
Score 14
An alternative ist to use the short form of "concatenate" which is either "r_[...]" or "c_[...]" as shown in the example code beneath (see Link for additional information):
%pylab
vector_a = r_[0.:10.] #short form of "arange"
vector_b = array([1,1,1,1])
vector_c = r_[vector_a,vector_b]
print vector_a
print vector_b
print vector_c, '\n\n'
a = ones((3,4))*4
print a, '\n'
c = array([1,1,1])
b = c_[a,c]
print b, '\n\n'
a = ones((4,3))*4
print a, '\n'
c = array([[1,1,1]])
b = r_[a,c]
print b
print type(vector_b)
Which results in:
[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
[1 1 1 1]
[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 1. 1. 1. 1.]
[[ 4. 4. 4. 4.]
[ 4. 4. 4. 4.]
[ 4. 4. 4. 4.]]
[[ 4. 4. 4. 4. 1.]
[ 4. 4. 4. 4. 1.]
[ 4. 4. 4. 4. 1.]]
[[ 4. 4. 4.]
[ 4. 4. 4.]
[ 4. 4. 4.]
[ 4. 4. 4.]]
[[ 4. 4. 4.]
[ 4. 4. 4.]
[ 4. 4. 4.]
[ 4. 4. 4.]
[ 1. 1. 1.]]
