The Python Oracle

How to tell if tensorflow is using gpu acceleration from inside python shell?

--------------------------------------------------
Rise to the top 3% as a developer or hire one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------

Music by Eric Matyas
https://www.soundimage.org
Track title: Puzzle Island

--

Chapters
00:00 How To Tell If Tensorflow Is Using Gpu Acceleration From Inside Python Shell?
00:45 Accepted Answer Score 448
01:15 Answer 2 Score 302
02:50 Answer 3 Score 207
03:12 Answer 4 Score 124
03:40 Thank you

--

Full question
https://stackoverflow.com/questions/3800...

--

Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...

--

Tags
#python #tensorflow #ubuntu #gpu

#avk47



ACCEPTED ANSWER

Score 448


No, I don't think "open CUDA library" is enough to tell, because different nodes of the graph may be on different devices.

When using tensorflow2:

print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))

For tensorflow1, to find out which device is used, you can enable log device placement like this:

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

Check your console for this type of output.




ANSWER 2

Score 302


Apart from using sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) which is outlined in other answers as well as in the official TensorFlow documentation, you can try to assign a computation to the gpu and see whether you have an error.

import tensorflow as tf
with tf.device('/gpu:0'):
    a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
    b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
    c = tf.matmul(a, b)

with tf.Session() as sess:
    print (sess.run(c))

Here

  • "/cpu:0": The CPU of your machine.
  • "/gpu:0": The GPU of your machine, if you have one.

If you have a gpu and can use it, you will see the result. Otherwise you will see an error with a long stacktrace. In the end you will have something like this:

Cannot assign a device to node 'MatMul': Could not satisfy explicit device specification '/device:GPU:0' because no devices matching that specification are registered in this process


Recently a few helpful functions appeared in TF:

You can also check for available devices in the session:

with tf.Session() as sess:
  devices = sess.list_devices()

devices will return you something like

[_DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:CPU:0, CPU, -1, 4670268618893924978),
 _DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, 6127825144471676437),
 _DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:XLA_GPU:0, XLA_GPU, 17179869184, 16148453971365832732),
 _DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, 10003582050679337480),
 _DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, 5678397037036584928)



ANSWER 3

Score 207


Following piece of code should give you all devices available to tensorflow.

from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())

Sample Output

[name: "/cpu:0" device_type: "CPU" memory_limit: 268435456 locality { } incarnation: 4402277519343584096,

name: "/gpu:0" device_type: "GPU" memory_limit: 6772842168 locality { bus_id: 1 } incarnation: 7471795903849088328 physical_device_desc: "device: 0, name: GeForce GTX 1070, pci bus id: 0000:05:00.0" ]




ANSWER 4

Score 124


I think there is an easier way to achieve this.

import tensorflow as tf
if tf.test.gpu_device_name():
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
else:
    print("Please install GPU version of TF")

It usually prints like

Default GPU Device: /device:GPU:0

This seems easier to me rather than those verbose logs.

Edit:- This was tested for TF 1.x versions. I never had a chance to do stuff with TF 2.0 or above so keep in mind.