The Python Oracle

Elegant ways to support equivalence ("equality") in Python classes

--------------------------------------------------
Rise to the top 3% as a developer or hire one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------

Music by Eric Matyas
https://www.soundimage.org
Track title: Romantic Lands Beckon

--

Chapters
00:00 Elegant Ways To Support Equivalence (&Quot;Equality&Quot;) In Python Classes
01:13 Answer 1 Score 9
01:51 Answer 2 Score 165
02:15 Answer 3 Score 233
02:37 Answer 4 Score 18
03:34 Thank you

--

Full question
https://stackoverflow.com/questions/3902...

--

Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...

--

Tags
#python #equality #equivalence

#avk47



ANSWER 1

Score 233


You need to be careful with inheritance:

>>> class Foo:
    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.__dict__ == other.__dict__
        else:
            return False

>>> class Bar(Foo):pass

>>> b = Bar()
>>> f = Foo()
>>> f == b
True
>>> b == f
False

Check types more strictly, like this:

def __eq__(self, other):
    if type(other) is type(self):
        return self.__dict__ == other.__dict__
    return False

Besides that, your approach will work fine, that's what special methods are there for.




ANSWER 2

Score 165


The way you describe is the way I've always done it. Since it's totally generic, you can always break that functionality out into a mixin class and inherit it in classes where you want that functionality.

class CommonEqualityMixin(object):

    def __eq__(self, other):
        return (isinstance(other, self.__class__)
            and self.__dict__ == other.__dict__)

    def __ne__(self, other):
        return not self.__eq__(other)

class Foo(CommonEqualityMixin):

    def __init__(self, item):
        self.item = item



ANSWER 3

Score 18


Not a direct answer but seemed relevant enough to be tacked on as it saves a bit of verbose tedium on occasion. Cut straight from the docs...


functools.total_ordering(cls)

Given a class defining one or more rich comparison ordering methods, this class decorator supplies the rest. This simplifies the effort involved in specifying all of the possible rich comparison operations:

The class must define one of __lt__(), __le__(), __gt__(), or __ge__(). In addition, the class should supply an __eq__() method.

New in version 2.7

@total_ordering
class Student:
    def __eq__(self, other):
        return ((self.lastname.lower(), self.firstname.lower()) ==
                (other.lastname.lower(), other.firstname.lower()))
    def __lt__(self, other):
        return ((self.lastname.lower(), self.firstname.lower()) <
                (other.lastname.lower(), other.firstname.lower()))



ANSWER 4

Score 9


You don't have to override both __eq__ and __ne__ you can override only __cmp__ but this will make an implication on the result of ==, !==, < , > and so on.

is tests for object identity. This means a is b will be True in the case when a and b both hold the reference to the same object. In python you always hold a reference to an object in a variable not the actual object, so essentially for a is b to be true the objects in them should be located in the same memory location. How and most importantly why would you go about overriding this behaviour?

Edit: I didn't know __cmp__ was removed from python 3 so avoid it.