Python Pandas: Get index of rows where column matches certain value
Rise to the top 3% as a developer or hire one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: Puddle Jumping Looping
--
Chapters
00:00 Python Pandas: Get Index Of Rows Where Column Matches Certain Value
00:38 Accepted Answer Score 800
01:52 Answer 2 Score 50
02:24 Answer 3 Score 5
02:56 Answer 4 Score 5
03:08 Thank you
--
Full question
https://stackoverflow.com/questions/2180...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #pandas #dataframe #indexing
#avk47
ACCEPTED ANSWER
Score 800
df.iloc[i] returns the ith row of df. i does not refer to the index label, i is a 0-based index.
In contrast, the attribute index returns actual index labels, not numeric row-indices:
df.index[df['BoolCol'] == True].tolist()
or equivalently,
df.index[df['BoolCol']].tolist()
You can see the difference quite clearly by playing with a DataFrame with a non-default index that does not equal to the row's numerical position:
df = pd.DataFrame({'BoolCol': [True, False, False, True, True]},
       index=[10,20,30,40,50])
In [53]: df
Out[53]: 
   BoolCol
10    True
20   False
30   False
40    True
50    True
[5 rows x 1 columns]
In [54]: df.index[df['BoolCol']].tolist()
Out[54]: [10, 40, 50]
If you want to use the index,
In [56]: idx = df.index[df['BoolCol']]
In [57]: idx
Out[57]: Int64Index([10, 40, 50], dtype='int64')
then you can select the rows using loc instead of iloc:
In [58]: df.loc[idx]
Out[58]: 
   BoolCol
10    True
40    True
50    True
[3 rows x 1 columns]
Note that loc can also accept boolean arrays:
In [55]: df.loc[df['BoolCol']]
Out[55]: 
   BoolCol
10    True
40    True
50    True
[3 rows x 1 columns]
If you have a boolean array, mask, and need ordinal index values, you can compute them using np.flatnonzero:
In [110]: np.flatnonzero(df['BoolCol'])
Out[112]: array([0, 3, 4])
Use df.iloc to select rows by ordinal index:
In [113]: df.iloc[np.flatnonzero(df['BoolCol'])]
Out[113]: 
   BoolCol
10    True
40    True
50    True
ANSWER 2
Score 50
Can be done using numpy where() function:
import pandas as pd
import numpy as np
In [716]: df = pd.DataFrame({"gene_name": ['SLC45A1', 'NECAP2', 'CLIC4', 'ADC', 'AGBL4'] , "BoolCol": [False, True, False, True, True] },
       index=list("abcde"))
In [717]: df
Out[717]: 
  BoolCol gene_name
a   False   SLC45A1
b    True    NECAP2
c   False     CLIC4
d    True       ADC
e    True     AGBL4
In [718]: np.where(df["BoolCol"] == True)
Out[718]: (array([1, 3, 4]),)
In [719]: select_indices = list(np.where(df["BoolCol"] == True)[0])
In [720]: df.iloc[select_indices]
Out[720]: 
  BoolCol gene_name
b    True    NECAP2
d    True       ADC
e    True     AGBL4
Though you don't always need index for a match, but incase if you need:
In [796]: df.iloc[select_indices].index
Out[796]: Index([u'b', u'd', u'e'], dtype='object')
In [797]: df.iloc[select_indices].index.tolist()
Out[797]: ['b', 'd', 'e']
ANSWER 3
Score 5
First you may check query when the target column is type bool  (PS: about how to use it please check link )
df.query('BoolCol')
Out[123]: 
    BoolCol
10     True
40     True
50     True
After we filter the original df by the Boolean column we can pick the index .
df=df.query('BoolCol')
df.index
Out[125]: Int64Index([10, 40, 50], dtype='int64')
Also pandas have nonzero, we just select the position of True row and using it slice the DataFrame or index
df.index[df.BoolCol.values.nonzero()[0]]
Out[128]: Int64Index([10, 40, 50], dtype='int64')
ANSWER 4
Score 5
Simple way is to reset the index of the DataFrame prior to filtering:
df_reset = df.reset_index()
df_reset[df_reset['BoolCol']].index.tolist()
Bit hacky, but it's quick!