Get default line colour cycle
Rise to the top 3% as a developer or hire one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: Dreamlands
--
Chapters
00:00 Get Default Line Colour Cycle
00:23 Accepted Answer Score 210
00:58 Answer 2 Score 195
02:21 Answer 3 Score 5
02:58 Answer 4 Score 8
03:32 Thank you
--
Full question
https://stackoverflow.com/questions/4208...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #matplotlib
#avk47
ACCEPTED ANSWER
Score 210
In matplotlib versions >= 1.5, you can print the rcParam called axes.prop_cycle:
print(plt.rcParams['axes.prop_cycle'].by_key()['color'])
# [u'#1f77b4', u'#ff7f0e', u'#2ca02c', u'#d62728', u'#9467bd', u'#8c564b', u'#e377c2', u'#7f7f7f', u'#bcbd22', u'#17becf']
Or equivalently, in python2:
print plt.rcParams['axes.prop_cycle'].by_key()['color']
In versions < 1.5, this was called color_cycle:
print plt.rcParams['axes.color_cycle']
# [u'b', u'g', u'r', u'c', u'm', u'y', u'k']
Note that the default color cycle changed in version 2.0.0 http://matplotlib.org/users/dflt_style_changes.html#colors-in-default-property-cycle
ANSWER 2
Score 195
Often, there is no need to get the default color cycle from anywhere, as it is the default one, so just using it is sufficient.
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
t = np.arange(5)
for i in range(4):
    line, = ax.plot(t,i*(t+1), linestyle = '-')
    ax.plot(t,i*(t+1)+.3,color = line.get_color(), linestyle = ':')
plt.show()
In case you want to use the default color cycle for something different, there are of course several options.
"tab10" colormap
First it should be mentionned that the "tab10" colormap comprises the colors from the default color cycle, you can get it via cmap = plt.get_cmap("tab10").
Equivalent to the above would hence be
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
t = np.arange(5)
cmap = plt.get_cmap("tab10")
for i in range(4):
    ax.plot(t,i*(t+1),   color=cmap(i), linestyle = '-')
    ax.plot(t,i*(t+1)+.3,color=cmap(i), linestyle = ':')
plt.show()
Colors from color cycle
You can also use the color cycler directly, cycle = plt.rcParams['axes.prop_cycle'].by_key()['color']. This gives list with the colors from the cycle, which you can use to iterate over.
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
t = np.arange(5)
cycle = plt.rcParams['axes.prop_cycle'].by_key()['color']
for i in range(4):
    ax.plot(t,i*(t+1),   color=cycle[i], linestyle = '-')
    ax.plot(t,i*(t+1)+.3,color=cycle[i], linestyle = ':')
plt.show()
The CN notation
Finally, the CN notation allows to get the Nth color of the color cycle, color="C{}".format(i). This however only works for the first 10 colors (N in [0,1,...9]) 
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
t = np.arange(5)
for i in range(4):
    ax.plot(t,i*(t+1),   color="C{}".format(i), linestyle = '-')
    ax.plot(t,i*(t+1)+.3,color="C{}".format(i), linestyle = ':')
plt.show()
All codes presented here produce the same plot.
ANSWER 3
Score 8
The CN notation revisited
I'd like to address a new development of Matplotlib. In a previous answer we read
Finally, the
CNnotation allows to get theNth color of the color cycle,color="C{}".format(i). This however only works for the first 10 colors (N in [0,1,...9])
but
import numpy as np 
import matplotlib.pyplot as plt 
t = np.linspace(0,6.28, 629)                                                      
for N in (1, 2): 
    C0N, C1N = 'C%d'%(N), 'C%d'%(N+10) 
    plt.plot(t, N*np.sin(t), c=C0N, ls='-',  label='c='+C0N) 
    plt.plot(t, N*np.cos(t), c=C1N, ls='--', label='c='+C1N) 
plt.legend() ; plt.grid() ; plt.show()                                           
gives
ANSWER 4
Score 5
if you're looking for a quick one-liner to get the RGB colors that matplotlib uses for its lines, here it is:
>>> import matplotlib; print('\n'.join([str(matplotlib.colors.to_rgb(c)) for c in matplotlib.pyplot.rcParams['axes.prop_cycle'].by_key()['color']]))
(0.12156862745098039, 0.4666666666666667, 0.7058823529411765)
(1.0, 0.4980392156862745, 0.054901960784313725)
(0.17254901960784313, 0.6274509803921569, 0.17254901960784313)
(0.8392156862745098, 0.15294117647058825, 0.1568627450980392)
(0.5803921568627451, 0.403921568627451, 0.7411764705882353)
(0.5490196078431373, 0.33725490196078434, 0.29411764705882354)
(0.8901960784313725, 0.4666666666666667, 0.7607843137254902)
(0.4980392156862745, 0.4980392156862745, 0.4980392156862745)
(0.7372549019607844, 0.7411764705882353, 0.13333333333333333)
(0.09019607843137255, 0.7450980392156863, 0.8117647058823529)
Or for uint8:
import matplotlib; print('\n'.join([str(tuple(int(round(v*255)) for v in matplotlib.colors.to_rgb(c))) for c in matplotlib.pyplot.rcParams['axes.prop_cycle'].by_key()['color']]))
(31, 119, 180)
(255, 127, 14)
(44, 160, 44)
(214, 39, 40)
(148, 103, 189)
(140, 86, 75)
(227, 119, 194)
(127, 127, 127)
(188, 189, 34)
(23, 190, 207)

