Plotting results of Pandas GroupBy
--------------------------------------------------
Rise to the top 3% as a developer or hire one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: The Builders
--
Chapters
00:00 Plotting Results Of Pandas Groupby
01:19 Accepted Answer Score 43
01:42 Thank you
--
Full question
https://stackoverflow.com/questions/1546...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #matplotlib #groupby #pandas #dataanalysis
#avk47
    Rise to the top 3% as a developer or hire one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: The Builders
--
Chapters
00:00 Plotting Results Of Pandas Groupby
01:19 Accepted Answer Score 43
01:42 Thank you
--
Full question
https://stackoverflow.com/questions/1546...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #matplotlib #groupby #pandas #dataanalysis
#avk47
ACCEPTED ANSWER
Score 43
I think @herrfz hit all the high points. I'll just flesh out the details:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
sin = np.sin
cos = np.cos
pi = np.pi
N = 100
x = np.linspace(0, pi, N)
a = sin(x)
b = cos(x)
df = pd.DataFrame({
    'A': [True]*N + [False]*N,
    'B': np.hstack((a,b))
    })
for key, grp in df.groupby(['A']):
    plt.plot(grp['B'], label=key)
    grp['D'] = pd.rolling_mean(grp['B'], window=5)    
    plt.plot(grp['D'], label='rolling ({k})'.format(k=key))
plt.legend(loc='best')    
plt.show()
