The Python Oracle

Pandas every nth row

--------------------------------------------------
Hire the world's top talent on demand or became one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------

Music by Eric Matyas
https://www.soundimage.org
Track title: Future Grid Looping

--

Chapters
00:00 Pandas Every Nth Row
00:16 Accepted Answer Score 410
00:32 Answer 2 Score 57
01:02 Answer 3 Score 2
01:17 Answer 4 Score 13
01:52 Thank you

--

Full question
https://stackoverflow.com/questions/2505...

--

Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...

--

Tags
#python #pandas #resampling

#avk47



ACCEPTED ANSWER

Score 410


I'd use iloc, which takes a row/column slice, both based on integer position and following normal python syntax. If you want every 5th row:

df.iloc[::5, :]



ANSWER 2

Score 57


Though @chrisb's accepted answer does answer the question, I would like to add to it the following.

A simple method I use to get the nth data or drop the nth row is the following:

df1 = df[df.index % 3 != 0]  # Excludes every 3rd row starting from 0
df2 = df[df.index % 3 == 0]  # Selects every 3rd raw starting from 0

This arithmetic based sampling has the ability to enable even more complex row-selections.

This assumes, of course, that you have an index column of ordered, consecutive, integers starting at 0.




ANSWER 3

Score 13


There is an even simpler solution to the accepted answer that involves directly invoking df.__getitem__.

df = pd.DataFrame('x', index=range(5), columns=list('abc'))
df

   a  b  c
0  x  x  x
1  x  x  x
2  x  x  x
3  x  x  x
4  x  x  x

For example, to get every 2 rows, you can do

df[::2]

   a  b  c
0  x  x  x
2  x  x  x
4  x  x  x

There's also GroupBy.first/GroupBy.head, you group on the index:

df.index // 2
# Int64Index([0, 0, 1, 1, 2], dtype='int64')

df.groupby(df.index // 2).first()
# Alternatively,
# df.groupby(df.index // 2).head(1)

   a  b  c
0  x  x  x
1  x  x  x
2  x  x  x

The index is floor-divved by the stride (2, in this case). If the index is non-numeric, instead do

# df.groupby(np.arange(len(df)) // 2).first()
df.groupby(pd.RangeIndex(len(df)) // 2).first()

   a  b  c
0  x  x  x
1  x  x  x
2  x  x  x



ANSWER 4

Score 2


I had a similar requirement, but I wanted the n'th item in a particular group. This is how I solved it.

groups = data.groupby(['group_key'])
selection = groups['index_col'].apply(lambda x: x % 3 == 0)
subset = data[selection]