Will numpy keep order of assignment when existing duplicated indexes?
--------------------------------------------------
Hire the world's top talent on demand or became one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: Breezy Bay
--
Chapters
00:00 Will Numpy Keep Order Of Assignment When Existing Duplicated Indexes?
00:52 Answer 1 Score 2
01:23 Accepted Answer Score 0
01:44 Thank you
--
Full question
https://stackoverflow.com/questions/4467...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #arrays #numpy
#avk47
    Hire the world's top talent on demand or became one of them at Toptal: https://topt.al/25cXVn
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: Breezy Bay
--
Chapters
00:00 Will Numpy Keep Order Of Assignment When Existing Duplicated Indexes?
00:52 Answer 1 Score 2
01:23 Accepted Answer Score 0
01:44 Thank you
--
Full question
https://stackoverflow.com/questions/4467...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #arrays #numpy
#avk47
ANSWER 1
Score 2
Here's one approach to guarantee the assignment into the last indices from the group of identical indices -
# Get sorting indices for index keeping the order with 'mergesort' option
sidx = index.argsort(kind='mergesort')
# Get sorted index array
sindex = index[sidx]
# Get the last indices from each group of identical indices in sorted version
idx = sidx[np.r_[np.flatnonzero(sindex[1:] != sindex[:-1]), index.size-1]]
# Use those last group indices to select indices off index and b to assign
a[index[idx]] = b[idx]
Sample run -
In [141]: a
Out[141]: array([0, 1, 2, 3, 4])
In [142]: index
Out[142]: array([1, 2, 3, 1, 2, 1, 2, 3, 4, 2])
In [143]: b
Out[143]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [144]: sidx = index.argsort(kind='mergesort')
     ...: sindex = index[sidx]
     ...: idx = sidx[np.r_[np.flatnonzero(sindex[1:] != sindex[:-1]), index.size-1]]
     ...: a[index[idx]] = b[idx]
     ...: 
In [145]: a
Out[145]: array([0, 5, 9, 7, 8])
ACCEPTED ANSWER
Score 0
An simpler equivalent to Divakar's solution.
def assign_last(a, index, b):
    """a[index] = b
    """
    index = index[::-1]
    b = b[::-1]
    ix_unique, ix_first = np.unique(index, return_index=True)
    # np.unique: return index of first occurrence.
    # ix_unique = index[ix_first]
    a[ix_unique] = b[ix_first]
    return a
a =  array([0, 1, 2, 3, 4])
index = array([1, 2, 3, 1, 2, 1, 2, 3, 4, 2])
b = array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
assign_last(a, index, b)
Output
array([0, 5, 9, 7, 8])