Keras: Confusion matrix at every epoch
--------------------------------------------------
Hire the world's top talent on demand or became one of them at Toptal: https://topt.al/25cXVn
and get $2,000 discount on your first invoice
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: Puzzle Game Looping
--
Chapters
00:00 Keras: Confusion Matrix At Every Epoch
00:30 Accepted Answer Score 1
01:26 Thank you
--
Full question
https://stackoverflow.com/questions/4900...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #deeplearning #keras
#avk47
Hire the world's top talent on demand or became one of them at Toptal: https://topt.al/25cXVn
and get $2,000 discount on your first invoice
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: Puzzle Game Looping
--
Chapters
00:00 Keras: Confusion Matrix At Every Epoch
00:30 Accepted Answer Score 1
01:26 Thank you
--
Full question
https://stackoverflow.com/questions/4900...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #deeplearning #keras
#avk47
ACCEPTED ANSWER
Score 1
Simply, just pass the following functions to model.compile function:
from keras import backend as K
def recall_m(y_true, y_pred): # TPR
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) # TP
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) # P
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision_m(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) # TP
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) # TP + FP
precision = true_positives / (predicted_positives + K.epsilon())
return precision
def f1_m(y_true, y_pred):
precision = precision_m(y_true, y_pred)
recall = recall_m(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
def TP(y_true, y_pred):
tp = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) # TP
y_pos = K.round(K.clip(y_true, 0, 1))
n_pos = K.sum(y_pos)
y_neg = 1 - y_pos
n_neg = K.sum(y_neg)
n = n_pos + n_neg
return tp/n
def TN(y_true, y_pred):
y_pos = K.round(K.clip(y_true, 0, 1))
n_pos = K.sum(y_pos)
y_neg = 1 - y_pos
n_neg = K.sum(y_neg)
n = n_pos + n_neg
y_pred_pos = K.round(K.clip(y_pred, 0, 1))
y_pred_neg = 1 - y_pred_pos
tn = K.sum(K.round(K.clip(y_neg * y_pred_neg, 0, 1))) # TN
return tn/n
def FP(y_true, y_pred):
y_pos = K.round(K.clip(y_true, 0, 1))
n_pos = K.sum(y_pos)
y_neg = 1 - y_pos
n_neg = K.sum(y_neg)
n = n_pos + n_neg
tn = K.sum(K.round(K.clip(y_neg * y_pred, 0, 1))) # FP
return tn/n
def FN(y_true, y_pred):
y_pos = K.round(K.clip(y_true, 0, 1))
n_pos = K.sum(y_pos)
y_neg = 1 - y_pos
n_neg = K.sum(y_neg)
n = n_pos + n_neg
y_pred_pos = K.round(K.clip(y_pred, 0, 1))
y_pred_neg = 1 - y_pred_pos
tn = K.sum(K.round(K.clip(y_true * y_pred_neg, 0, 1))) # FN
return tn/n
Then,
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=lr),
metrics=['accuracy',f1_m,precision_m, recall_m, TP, TN, FP, FN])