Compare two DataFrames and output their differences side-by-side
Hire the world's top talent on demand or became one of them at Toptal: https://topt.al/25cXVn
and get $2,000 discount on your first invoice
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: Lost Civilization
--
Chapters
00:00 Compare Two Dataframes And Output Their Differences Side-By-Side
01:00 Accepted Answer Score 177
01:48 Answer 2 Score 28
02:42 Answer 3 Score 60
03:48 Answer 4 Score 142
04:51 Thank you
--
Full question
https://stackoverflow.com/questions/1709...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #pandas #dataframe
#avk47
ACCEPTED ANSWER
Score 177
The first part is similar to Constantine, you can get the boolean of which rows are empty*:
In [21]: ne = (df1 != df2).any(1)
In [22]: ne
Out[22]:
0    False
1     True
2     True
dtype: bool
Then we can see which entries have changed:
In [23]: ne_stacked = (df1 != df2).stack()
In [24]: changed = ne_stacked[ne_stacked]
In [25]: changed.index.names = ['id', 'col']
In [26]: changed
Out[26]:
id  col
1   score         True
2   isEnrolled    True
    Comment       True
dtype: bool
Here the first entry is the index and the second the columns which has been changed.
In [27]: difference_locations = np.where(df1 != df2)
In [28]: changed_from = df1.values[difference_locations]
In [29]: changed_to = df2.values[difference_locations]
In [30]: pd.DataFrame({'from': changed_from, 'to': changed_to}, index=changed.index)
Out[30]:
               from           to
id col
1  score       1.11         1.21
2  isEnrolled  True        False
   Comment     None  On vacation
* Note: it's important that df1 and df2 share the same index here. To overcome this ambiguity, you can ensure you only look at the shared labels using df1.index & df2.index, but I think I'll leave that as an exercise.
ANSWER 2
Score 142
Highlighting the difference between two DataFrames
It is possible to use the DataFrame style property to highlight the background color of the cells where there is a difference.
Using the example data from the original question
The first step is to concatenate the DataFrames horizontally with the concat function and distinguish each frame with the keys parameter:
df_all = pd.concat([df.set_index('id'), df2.set_index('id')], 
                   axis='columns', keys=['First', 'Second'])
df_all
It's probably easier to swap the column levels and put the same column names next to each other:
df_final = df_all.swaplevel(axis='columns')[df.columns[1:]]
df_final
Now, its much easier to spot the differences in the frames. But, we can go further and use the style property to highlight the cells that are different. We define a custom function to do this which you can see in this part of the documentation.
def highlight_diff(data, color='yellow'):
    attr = 'background-color: {}'.format(color)
    other = data.xs('First', axis='columns', level=-1)
    return pd.DataFrame(np.where(data.ne(other, level=0), attr, ''),
                        index=data.index, columns=data.columns)
df_final.style.apply(highlight_diff, axis=None)
This will highlight cells that both have missing values. You can either fill them or provide extra logic so that they don't get highlighted.
ANSWER 3
Score 60
This answer simply extends @Andy Hayden's, making it resilient to when numeric fields are nan, and wrapping it up into a function.
import pandas as pd
import numpy as np
def diff_pd(df1, df2):
    """Identify differences between two pandas DataFrames"""
    assert (df1.columns == df2.columns).all(), \
        "DataFrame column names are different"
    if any(df1.dtypes != df2.dtypes):
        "Data Types are different, trying to convert"
        df2 = df2.astype(df1.dtypes)
    if df1.equals(df2):
        return None
    else:
        # need to account for np.nan != np.nan returning True
        diff_mask = (df1 != df2) & ~(df1.isnull() & df2.isnull())
        ne_stacked = diff_mask.stack()
        changed = ne_stacked[ne_stacked]
        changed.index.names = ['id', 'col']
        difference_locations = np.where(diff_mask)
        changed_from = df1.values[difference_locations]
        changed_to = df2.values[difference_locations]
        return pd.DataFrame({'from': changed_from, 'to': changed_to},
                            index=changed.index)
So with your data (slightly edited to have a NaN in the score column):
import sys
if sys.version_info[0] < 3:
    from StringIO import StringIO
else:
    from io import StringIO
DF1 = StringIO("""id   Name   score                    isEnrolled           Comment
111  Jack   2.17                     True                 "He was late to class"
112  Nick   1.11                     False                "Graduated"
113  Zoe    NaN                     True                  " "
""")
DF2 = StringIO("""id   Name   score                    isEnrolled           Comment
111  Jack   2.17                     True                 "He was late to class"
112  Nick   1.21                     False                "Graduated"
113  Zoe    NaN                     False                "On vacation" """)
df1 = pd.read_table(DF1, sep='\s+', index_col='id')
df2 = pd.read_table(DF2, sep='\s+', index_col='id')
diff_pd(df1, df2)
Output:
                from           to
id  col                          
112 score       1.11         1.21
113 isEnrolled  True        False
    Comment           On vacation
ANSWER 4
Score 28
import pandas as pd
import io
texts = ['''\
id   Name   score                    isEnrolled                        Comment
111  Jack   2.17                     True                 He was late to class
112  Nick   1.11                     False                           Graduated
113  Zoe    4.12                     True       ''',
         '''\
id   Name   score                    isEnrolled                        Comment
111  Jack   2.17                     True                 He was late to class
112  Nick   1.21                     False                           Graduated
113  Zoe    4.12                     False                         On vacation''']
df1 = pd.read_fwf(io.StringIO(texts[0]), widths=[5,7,25,21,20])
df2 = pd.read_fwf(io.StringIO(texts[1]), widths=[5,7,25,21,20])
df = pd.concat([df1,df2]) 
print(df)
#     id  Name  score isEnrolled               Comment
# 0  111  Jack   2.17       True  He was late to class
# 1  112  Nick   1.11      False             Graduated
# 2  113   Zoe   4.12       True                   NaN
# 0  111  Jack   2.17       True  He was late to class
# 1  112  Nick   1.21      False             Graduated
# 2  113   Zoe   4.12      False           On vacation
df.set_index(['id', 'Name'], inplace=True)
print(df)
#           score isEnrolled               Comment
# id  Name                                        
# 111 Jack   2.17       True  He was late to class
# 112 Nick   1.11      False             Graduated
# 113 Zoe    4.12       True                   NaN
# 111 Jack   2.17       True  He was late to class
# 112 Nick   1.21      False             Graduated
# 113 Zoe    4.12      False           On vacation
def report_diff(x):
    return x[0] if x[0] == x[1] else '{} | {}'.format(*x)
changes = df.groupby(level=['id', 'Name']).agg(report_diff)
print(changes)
prints
                score    isEnrolled               Comment
id  Name                                                 
111 Jack         2.17          True  He was late to class
112 Nick  1.11 | 1.21         False             Graduated
113 Zoe          4.12  True | False     nan | On vacation


