The Python Oracle

Plot smooth line with PyPlot

--------------------------------------------------
Hire the world's top talent on demand or became one of them at Toptal: https://topt.al/25cXVn
and get $2,000 discount on your first invoice
--------------------------------------------------

Music by Eric Matyas
https://www.soundimage.org
Track title: Thinking It Over

--

Chapters
00:00 Plot Smooth Line With Pyplot
00:35 Accepted Answer Score 230
01:16 Answer 2 Score 72
01:41 Answer 3 Score 26
02:16 Answer 4 Score 12
02:43 Thank you

--

Full question
https://stackoverflow.com/questions/5283...

--

Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...

--

Tags
#python #matplotlib #plot #smoothing

#avk47



ACCEPTED ANSWER

Score 230


You could use scipy.interpolate.spline to smooth out your data yourself:

from scipy.interpolate import spline

# 300 represents number of points to make between T.min and T.max
xnew = np.linspace(T.min(), T.max(), 300)  

power_smooth = spline(T, power, xnew)

plt.plot(xnew,power_smooth)
plt.show()

spline is deprecated in scipy 0.19.0, use BSpline class instead.

Switching from spline to BSpline isn't a straightforward copy/paste and requires a little tweaking:

from scipy.interpolate import make_interp_spline, BSpline

# 300 represents number of points to make between T.min and T.max
xnew = np.linspace(T.min(), T.max(), 300) 

spl = make_interp_spline(T, power, k=3)  # type: BSpline
power_smooth = spl(xnew)

plt.plot(xnew, power_smooth)
plt.show()

Before: screenshot 1

After: screenshot 2




ANSWER 2

Score 72


For this example spline works well, but if the function is not smooth inherently and you want to have smoothed version you can also try:

from scipy.ndimage.filters import gaussian_filter1d

ysmoothed = gaussian_filter1d(y, sigma=2)
plt.plot(x, ysmoothed)
plt.show()

if you increase sigma you can get a more smoothed function.

Proceed with caution with this one. It modifies the original values and may not be what you want.




ANSWER 3

Score 26


See the scipy.interpolate documentation for some examples.

The following example demonstrates its use, for linear and cubic spline interpolation:

import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import interp1d

# Define x, y, and xnew to resample at.
x = np.linspace(0, 10, num=11, endpoint=True)
y = np.cos(-x**2/9.0)
xnew = np.linspace(0, 10, num=41, endpoint=True)

# Define interpolators.
f_linear = interp1d(x, y)
f_cubic = interp1d(x, y, kind='cubic')

# Plot.
plt.plot(x, y, 'o', label='data')
plt.plot(xnew, f_linear(xnew), '-', label='linear')
plt.plot(xnew, f_cubic(xnew), '--', label='cubic')
plt.legend(loc='best')
plt.show()

enter image description here

Slightly modified for increased readability.




ANSWER 4

Score 12


Here is a simple solution for dates:

from scipy.interpolate import make_interp_spline
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as dates
from datetime import datetime

data = {
    datetime(2016, 9, 26, 0, 0): 26060, datetime(2016, 9, 27, 0, 0): 23243,
    datetime(2016, 9, 28, 0, 0): 22534, datetime(2016, 9, 29, 0, 0): 22841,
    datetime(2016, 9, 30, 0, 0): 22441, datetime(2016, 10, 1, 0, 0): 23248 
}
#create data
date_np = np.array(list(data.keys()))
value_np = np.array(list(data.values()))
date_num = dates.date2num(date_np)
# smooth
date_num_smooth = np.linspace(date_num.min(), date_num.max(), 100) 
spl = make_interp_spline(date_num, value_np, k=3)
value_np_smooth = spl(date_num_smooth)
# print
plt.plot(date_np, value_np)
plt.plot(dates.num2date(date_num_smooth), value_np_smooth)
plt.show()

example