Python app does not print anything when running detached in docker
Hire the world's top talent on demand or became one of them at Toptal: https://topt.al/25cXVn
and get $2,000 discount on your first invoice
--------------------------------------------------
Music by Eric Matyas
https://www.soundimage.org
Track title: Isolated
--
Chapters
00:00 Python App Does Not Print Anything When Running Detached In Docker
01:06 Accepted Answer Score 636
01:53 Answer 2 Score 171
02:17 Answer 3 Score 42
03:52 Answer 4 Score 21
04:05 Thank you
--
Full question
https://stackoverflow.com/questions/2966...
--
Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...
--
Tags
#python #docker #dockerfile
#avk47
ACCEPTED ANSWER
Score 636
Finally I found a solution to see Python output when running daemonized in Docker, thanks to @ahmetalpbalkan over at GitHub. Answering it here myself for further reference :
Using unbuffered output with
CMD ["python","-u","main.py"]
instead of
CMD ["python","main.py"]
solves the problem; you can see the output now (both, stderr and stdout) via
docker logs myapp
why -u ref
- print is indeed buffered and docker logs will eventually give you that output, just after enough of it will have piled up
- executing the same script with python -u gives instant output as said above
- import logging + logging.warning("text") gives the expected result even without -u
what it means by python -u ref. > python --help | grep -- -u
-u : force the stdout and stderr streams to be unbuffered;
ANSWER 2
Score 171
In my case, running Python with -u didn't change anything. What did the trick, however, was to set PYTHONUNBUFFERED=1 as environment variable:
docker run --name=myapp -e PYTHONUNBUFFERED=1 -d myappimage
[Edit]: Updated PYTHONUNBUFFERED=0 to PYTHONUNBUFFERED=1 after Lars's comment. This doesn't change the behavior and adds clarity.
ANSWER 3
Score 42
See this article which explain detail reason for the behavior:
There are typically three modes for buffering:
- If a file descriptor is unbuffered then no buffering occurs whatsoever, and function calls that read or write data occur immediately (and will block).
- If a file descriptor is fully-buffered then a fixed-size buffer is used, and read or write calls simply read or write from the buffer. The buffer isn’t flushed until it fills up.
- If a file descriptor is line-buffered then the buffering waits until it sees a newline character. So data will buffer and buffer until a \n is seen, and then all of the data that buffered is flushed at that point in time. In reality there’s typically a maximum size on the buffer (just as in the fully-buffered case), so the rule is actually more like “buffer until a newline character is seen or 4096 bytes of data are encountered, whichever occurs first”.
And GNU libc (glibc) uses the following rules for buffering:
Stream Type Behavior
stdin input line-buffered
stdout (TTY) output line-buffered
stdout (not a TTY) output fully-buffered
stderr output unbuffered
So, if use -t, from docker document, it will allocate a pseudo-tty, then stdout becomes line-buffered, thus docker run --name=myapp -it myappimage could see the one-line output.
And, if just use -d, no tty was allocated, then, stdout is fully-buffered, one line App started surely not able to flush the buffer.
Then, use -dt to make stdout line buffered or add -u in python to flush the buffer is the way to fix it.
ANSWER 4
Score 21
Since I haven't seen this answer yet:
You can also flush stdout after you print to it:
import time
if __name__ == '__main__':
while True:
print('cleaner is up', flush=True)
time.sleep(5)