The Python Oracle

How to convert index of a pandas dataframe into a column

--------------------------------------------------
Hire the world's top talent on demand or became one of them at Toptal: https://topt.al/25cXVn
and get $2,000 discount on your first invoice
--------------------------------------------------

Music by Eric Matyas
https://www.soundimage.org
Track title: Droplet of life

--

Chapters
00:00 How To Convert Index Of A Pandas Dataframe Into A Column
00:24 Accepted Answer Score 1382
00:57 Answer 2 Score 43
01:11 Answer 3 Score 56
02:12 Answer 4 Score 15
02:48 Thank you

--

Full question
https://stackoverflow.com/questions/2046...

--

Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...

--

Tags
#python #pandas #dataframe #indexing #series

#avk47



ACCEPTED ANSWER

Score 1382


either:

df['index1'] = df.index

or .reset_index:

df = df.reset_index()

If you have a multi-index frame with 3 levels of index, like:

>>> df
                       val
tick       tag obs        
2016-02-26 C   2    0.0139
2016-02-27 A   2    0.5577
2016-02-28 C   6    0.0303

and you want to convert the 1st (tick) and 3rd (obs) levels in the index into columns, you could do:

>>> df.reset_index(level=['tick', 'obs'])
          tick  obs     val
tag                        
C   2016-02-26    2  0.0139
A   2016-02-27    2  0.5577
C   2016-02-28    6  0.0303



ANSWER 2

Score 56


To provide a bit more clarity, let's look at a DataFrame with two levels in its index (a MultiIndex).

index = pd.MultiIndex.from_product([['TX', 'FL', 'CA'], 
                                    ['North', 'South']], 
                                   names=['State', 'Direction'])

df = pd.DataFrame(index=index, 
                  data=np.random.randint(0, 10, (6,4)), 
                  columns=list('abcd'))

enter image description here

The reset_index method, called with the default parameters, converts all index levels to columns and uses a simple RangeIndex as new index.

df.reset_index()

enter image description here

Use the level parameter to control which index levels are converted into columns. If possible, use the level name, which is more explicit. If there are no level names, you can refer to each level by its integer location, which begin at 0 from the outside. You can use a scalar value here or a list of all the indexes you would like to reset.

df.reset_index(level='State') # same as df.reset_index(level=0)

enter image description here

In the rare event that you want to preserve the index and turn the index into a column, you can do the following:

# for a single level
df.assign(State=df.index.get_level_values('State'))

# for all levels
df.assign(**df.index.to_frame())



ANSWER 3

Score 43


For MultiIndex you can extract its subindex using

df['si_name'] = R.index.get_level_values('si_name') 

where si_name is the name of the subindex.




ANSWER 4

Score 15


If you want to use the reset_index method and also preserve your existing index you should use:

df.reset_index().set_index('index', drop=False)

or to change it in place:

df.reset_index(inplace=True)
df.set_index('index', drop=False, inplace=True)

For example:

print(df)
          gi  ptt_loc
0  384444683      593
4  384444684      594
9  384444686      596

print(df.reset_index())
   index         gi  ptt_loc
0      0  384444683      593
1      4  384444684      594
2      9  384444686      596

print(df.reset_index().set_index('index', drop=False))
       index         gi  ptt_loc
index
0          0  384444683      593
4          4  384444684      594
9          9  384444686      596

And if you want to get rid of the index label you can do:

df2 = df.reset_index().set_index('index', drop=False)
df2.index.name = None
print(df2)
   index         gi  ptt_loc
0      0  384444683      593
4      4  384444684      594
9      9  384444686      596