The Python Oracle

Pandas DataFrame: replace all values in a column, based on condition

--------------------------------------------------
Hire the world's top talent on demand or became one of them at Toptal: https://topt.al/25cXVn
and get $2,000 discount on your first invoice
--------------------------------------------------

Take control of your privacy with Proton's trusted, Swiss-based, secure services.
Choose what you need and safeguard your digital life:
Mail: https://go.getproton.me/SH1CU
VPN: https://go.getproton.me/SH1DI
Password Manager: https://go.getproton.me/SH1DJ
Drive: https://go.getproton.me/SH1CT


Music by Eric Matyas
https://www.soundimage.org
Track title: Puzzle Island

--

Chapters
00:00 Pandas Dataframe: Replace All Values In A Column, Based On Condition
00:30 Accepted Answer Score 456
01:19 Answer 2 Score 92
01:32 Answer 3 Score 17
01:46 Answer 4 Score 21
02:05 Thank you

--

Full question
https://stackoverflow.com/questions/3151...

--

Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...

--

Tags
#python #pandas #dataframe

#avk47



ACCEPTED ANSWER

Score 456


You need to select that column:

In [41]:
df.loc[df['First Season'] > 1990, 'First Season'] = 1
df

Out[41]:
                 Team  First Season  Total Games
0      Dallas Cowboys          1960          894
1       Chicago Bears          1920         1357
2   Green Bay Packers          1921         1339
3      Miami Dolphins          1966          792
4    Baltimore Ravens             1          326
5  San Franciso 49ers          1950         1003

So the syntax here is:

df.loc[<mask>(here mask is generating the labels to index) , <optional column(s)> ]

You can check the docs and also the 10 minutes to pandas which shows the semantics

EDIT

If you want to generate a boolean indicator then you can just use the boolean condition to generate a boolean Series and cast the dtype to int this will convert True and False to 1 and 0 respectively:

In [43]:
df['First Season'] = (df['First Season'] > 1990).astype(int)
df

Out[43]:
                 Team  First Season  Total Games
0      Dallas Cowboys             0          894
1       Chicago Bears             0         1357
2   Green Bay Packers             0         1339
3      Miami Dolphins             0          792
4    Baltimore Ravens             1          326
5  San Franciso 49ers             0         1003



ANSWER 2

Score 92


A bit late to the party but still - I prefer using numpy where:

import numpy as np
df['First Season'] = np.where(df['First Season'] > 1990, 1, df['First Season'])



ANSWER 3

Score 21


df.loc[df['First season'] > 1990, 'First Season'] = 1

Explanation:

df.loc takes two arguments, 'row index' and 'column index'. We are checking if the value is greater than 1990 of each row value, under "First season" column and then we replacing it with 1.




ANSWER 4

Score 17


df['First Season'].loc[(df['First Season'] > 1990)] = 1

strange that nobody has this answer, the only missing part of your code is the ['First Season'] right after df and just remove your curly brackets inside.