The Python Oracle

Add x and y labels to a pandas plot

--------------------------------------------------
Hire the world's top talent on demand or became one of them at Toptal: https://topt.al/25cXVn
and get $2,000 discount on your first invoice
--------------------------------------------------

Take control of your privacy with Proton's trusted, Swiss-based, secure services.
Choose what you need and safeguard your digital life:
Mail: https://go.getproton.me/SH1CU
VPN: https://go.getproton.me/SH1DI
Password Manager: https://go.getproton.me/SH1DJ
Drive: https://go.getproton.me/SH1CT


Music by Eric Matyas
https://www.soundimage.org
Track title: The Builders

--

Chapters
00:00 Add X And Y Labels To A Pandas Plot
00:32 Answer 1 Score 447
01:01 Answer 2 Score 64
01:22 Answer 3 Score 33
01:52 Answer 4 Score 31
02:10 Thank you

--

Full question
https://stackoverflow.com/questions/2148...

--

Content licensed under CC BY-SA
https://meta.stackexchange.com/help/lice...

--

Tags
#python #pandas #dataframe #matplotlib

#avk47



ANSWER 1

Score 447


The df.plot() function returns a matplotlib.axes.AxesSubplot object. You can set the labels on that object.

ax = df2.plot(lw=2, colormap='jet', marker='.', markersize=10, title='Video streaming dropout by category')
ax.set_xlabel("x label")
ax.set_ylabel("y label")

enter image description here

Or, more succinctly: ax.set(xlabel="x label", ylabel="y label").

Alternatively, the index x-axis label is automatically set to the Index name, if it has one. so df2.index.name = 'x label' would work too.




ANSWER 2

Score 64


You can use do it like this:

import matplotlib.pyplot as plt 
import pandas as pd

plt.figure()
values = [[1, 2], [2, 5]]
df2 = pd.DataFrame(values, columns=['Type A', 'Type B'], 
                   index=['Index 1', 'Index 2'])
df2.plot(lw=2, colormap='jet', marker='.', markersize=10,
         title='Video streaming dropout by category')
plt.xlabel('xlabel')
plt.ylabel('ylabel')
plt.show()

Obviously you have to replace the strings 'xlabel' and 'ylabel' with what you want them to be.




ANSWER 3

Score 33


If you label the columns and index of your DataFrame, pandas will automatically supply appropriate labels:

import pandas as pd
values = [[1, 2], [2, 5]]
df = pd.DataFrame(values, columns=['Type A', 'Type B'], 
                  index=['Index 1', 'Index 2'])
df.columns.name = 'Type'
df.index.name = 'Index'
df.plot(lw=2, colormap='jet', marker='.', markersize=10, 
        title='Video streaming dropout by category')

enter image description here

In this case, you'll still need to supply y-labels manually (e.g., via plt.ylabel as shown in the other answers).




ANSWER 4

Score 31


It is possible to set both labels together with axis.set function. Look for the example:

import pandas as pd
import matplotlib.pyplot as plt
values = [[1,2], [2,5]]
df2 = pd.DataFrame(values, columns=['Type A', 'Type B'], index=['Index 1','Index 2'])
ax = df2.plot(lw=2,colormap='jet',marker='.',markersize=10,title='Video streaming dropout by category')
# set labels for both axes
ax.set(xlabel='x axis', ylabel='y axis')
plt.show()

enter image description here